I\'m using the Python Imaging Library for some very simple image manipulation, however I\'m having trouble converting a greyscale image to a monochrome (black and white) ima
A simple way to do it using python :
Python
import numpy as np
import imageio
image = imageio.imread(r'[image-path]', as_gray=True)
# getting the threshold value
thresholdValue = np.mean(image)
# getting the dimensions of the image
xDim, yDim = image.shape
# turn the image into a black and white image
for i in range(xDim):
for j in range(yDim):
if (image[i][j] > thresholdValue):
image[i][j] = 255
else:
image[i][j] = 0
A PIL only solution for creating a bi-level (black and white) image with a custom threshold:
from PIL import Image
img = Image.open('mB96s.png')
thresh = 200
fn = lambda x : 255 if x > thresh else 0
r = img.convert('L').point(fn, mode='1')
r.save('foo.png')
With just
r = img.convert('1')
r.save('foo.png')
you get a dithered image.
From left to right the input image, the black and white conversion result and the dithered result:
You can click on the images to view the unscaled versions.
from PIL import Image
image_file = Image.open("convert_image.png") # open colour image
image_file = image_file.convert('1') # convert image to black and white
image_file.save('result.png')
yields
As Martin Thoma has said, you need to normally apply thresholding. But you can do this using simple vectorization which will run much faster than the for loop that is used in that answer.
The code below converts the pixels of an image into 0 (black) and 1 (white).
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
#Pixels higher than this will be 1. Otherwise 0.
THRESHOLD_VALUE = 200
#Load image and convert to greyscale
img = Image.open("photo.png")
img = img.convert("L")
imgData = np.asarray(img)
thresholdedData = (imgData > THRESHOLD_VALUE) * 1.0
plt.imshow(thresholdedData)
plt.show()
Another option (which is useful e.g. for scientific purposes when you need to work with segmentation masks) is simply apply a threshold:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Binarize (make it black and white) an image with Python."""
from PIL import Image
from scipy.misc import imsave
import numpy
def binarize_image(img_path, target_path, threshold):
"""Binarize an image."""
image_file = Image.open(img_path)
image = image_file.convert('L') # convert image to monochrome
image = numpy.array(image)
image = binarize_array(image, threshold)
imsave(target_path, image)
def binarize_array(numpy_array, threshold=200):
"""Binarize a numpy array."""
for i in range(len(numpy_array)):
for j in range(len(numpy_array[0])):
if numpy_array[i][j] > threshold:
numpy_array[i][j] = 255
else:
numpy_array[i][j] = 0
return numpy_array
def get_parser():
"""Get parser object for script xy.py."""
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
parser = ArgumentParser(description=__doc__,
formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("-i", "--input",
dest="input",
help="read this file",
metavar="FILE",
required=True)
parser.add_argument("-o", "--output",
dest="output",
help="write binarized file hre",
metavar="FILE",
required=True)
parser.add_argument("--threshold",
dest="threshold",
default=200,
type=int,
help="Threshold when to show white")
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
binarize_image(args.input, args.output, args.threshold)
It looks like this for ./binarize.py -i convert_image.png -o result_bin.png --threshold 200
: