I have a multi-index data frame with columns \'A\' and \'B\'.
Is there is a way to select rows by filtering on one column of the multi-index without resetting the
You can use DataFrame.xs()
:
In [36]: df = DataFrame(np.random.randn(10, 4))
In [37]: df.columns = [np.random.choice(['a', 'b'], size=4).tolist(), np.random.choice(['c', 'd'], size=4)]
In [38]: df.columns.names = ['A', 'B']
In [39]: df
Out[39]:
A b a
B d d d d
0 -1.406 0.548 -0.635 0.576
1 -0.212 -0.583 1.012 -1.377
2 0.951 -0.349 -0.477 -1.230
3 0.451 -0.168 0.949 0.545
4 -0.362 -0.855 1.676 -2.881
5 1.283 1.027 0.085 -1.282
6 0.583 -1.406 0.327 -0.146
7 -0.518 -0.480 0.139 0.851
8 -0.030 -0.630 -1.534 0.534
9 0.246 -1.558 -1.885 -1.543
In [40]: df.xs('a', level='A', axis=1)
Out[40]:
B d d
0 -0.635 0.576
1 1.012 -1.377
2 -0.477 -1.230
3 0.949 0.545
4 1.676 -2.881
5 0.085 -1.282
6 0.327 -0.146
7 0.139 0.851
8 -1.534 0.534
9 -1.885 -1.543
If you want to keep the A
level (the drop_level
keyword argument is only available starting from v0.13.0):
In [42]: df.xs('a', level='A', axis=1, drop_level=False)
Out[42]:
A a
B d d
0 -0.635 0.576
1 1.012 -1.377
2 -0.477 -1.230
3 0.949 0.545
4 1.676 -2.881
5 0.085 -1.282
6 0.327 -0.146
7 0.139 0.851
8 -1.534 0.534
9 -1.885 -1.543
You can also use query which is very readable in my opinion and straightforward to use:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [10, 20, 50, 80], 'C': [6, 7, 8, 9]})
df = df.set_index(['A', 'B'])
C
A B
1 10 6
2 20 7
3 50 8
4 80 9
For what you had in mind you can now simply do:
df.query('A == 1')
C
A B
1 10 6
You can also have more complex queries using and
df.query('A >= 1 and B >= 50')
C
A B
3 50 8
4 80 9
and or
df.query('A == 1 or B >= 50')
C
A B
1 10 6
3 50 8
4 80 9
You can also query on different index levels, e.g.
df.query('A == 1 or C >= 8')
will return
C
A B
1 10 6
3 50 8
4 80 9
If you want to use variables inside your query, you can use @:
b_threshold = 20
c_threshold = 8
df.query('B >= @b_threshold and C <= @c_threshold')
C
A B
2 20 7
3 50 8
You can use DataFrame.loc:
>>> df.loc[1]
>>> print(df)
result
A B C
1 1 1 6
2 9
2 1 8
2 11
2 1 1 7
2 10
2 1 9
2 12
>>> print(df.loc[1])
result
B C
1 1 6
2 9
2 1 8
2 11
>>> print(df.loc[2, 1])
result
C
1 7
2 10
Understanding how to access multi-indexed pandas DataFrame can help you with all kinds of task like that.
Copy paste this in your code to generate example:
# hierarchical indices and columns
index = pd.MultiIndex.from_product([[2013, 2014], [1, 2]],
names=['year', 'visit'])
columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']],
names=['subject', 'type'])
# mock some data
data = np.round(np.random.randn(4, 6), 1)
data[:, ::2] *= 10
data += 37
# create the DataFrame
health_data = pd.DataFrame(data, index=index, columns=columns)
health_data
Will give you table like this:
Standard access by column
health_data['Bob']
type HR Temp
year visit
2013 1 22.0 38.6
2 52.0 38.3
2014 1 30.0 38.9
2 31.0 37.3
health_data['Bob']['HR']
year visit
2013 1 22.0
2 52.0
2014 1 30.0
2 31.0
Name: HR, dtype: float64
# filtering by column/subcolumn - your case:
health_data['Bob']['HR']==22
year visit
2013 1 True
2 False
2014 1 False
2 False
health_data['Bob']['HR'][2013]
visit
1 22.0
2 52.0
Name: HR, dtype: float64
health_data['Bob']['HR'][2013][1]
22.0
Access by row
health_data.loc[2013]
subject Bob Guido Sue
type HR Temp HR Temp HR Temp
visit
1 22.0 38.6 40.0 38.9 53.0 37.5
2 52.0 38.3 42.0 34.6 30.0 37.7
health_data.loc[2013,1]
subject type
Bob HR 22.0
Temp 38.6
Guido HR 40.0
Temp 38.9
Sue HR 53.0
Temp 37.5
Name: (2013, 1), dtype: float64
health_data.loc[2013,1]['Bob']
type
HR 22.0
Temp 38.6
Name: (2013, 1), dtype: float64
health_data.loc[2013,1]['Bob']['HR']
22.0
Slicing multi-index
idx=pd.IndexSlice
health_data.loc[idx[:,1], idx[:,'HR']]
subject Bob Guido Sue
type HR HR HR
year visit
2013 1 22.0 40.0 53.0
2014 1 30.0 52.0 45.0
Another option is:
filter1 = df.index.get_level_values('A') == 1
filter2 = df.index.get_level_values('B') == 4
df.iloc[filter1 & filter2]
Out[11]:
0
A B
1 4 1
One way is to use the get_level_values
Index method:
In [11]: df
Out[11]:
0
A B
1 4 1
2 5 2
3 6 3
In [12]: df.iloc[df.index.get_level_values('A') == 1]
Out[12]:
0
A B
1 4 1
In 0.13 you'll be able to use xs with drop_level argument:
df.xs(1, level='A', drop_level=False) # axis=1 if columns
Note: if this were column MultiIndex rather than index, you could use the same technique:
In [21]: df1 = df.T
In [22]: df1.iloc[:, df1.columns.get_level_values('A') == 1]
Out[22]:
A 1
B 4
0 1