Scikit-learn: How to obtain True Positive, True Negative, False Positive and False Negative

前端 未结 16 1148
一生所求
一生所求 2020-12-02 04:25

My problem:

I have a dataset which is a large JSON file. I read it and store it in the trainList variable.

Next, I pre-process

相关标签:
16条回答
  • 2020-12-02 05:20

    Here's a fix to invoketheshell's buggy code (which currently appears as the accepted answer):

    def performance_measure(y_actual, y_hat):
        TP = 0
        FP = 0
        TN = 0
        FN = 0
    
        for i in range(len(y_hat)): 
            if y_actual[i] == y_hat[i]==1:
                TP += 1
            if y_hat[i] == 1 and y_actual[i] == 0:
                FP += 1
            if y_hat[i] == y_actual[i] == 0:
                TN +=1
            if y_hat[i] == 0 and y_actual[i] == 1:
                FN +=1
    
        return(TP, FP, TN, FN)
    
    0 讨论(0)
  • 2020-12-02 05:21

    In the scikit-learn 'metrics' library there is a confusion_matrix method which gives you the desired output.

    You can use any classifier that you want. Here I used the KNeighbors as example.

    from sklearn import metrics, neighbors
    
    clf = neighbors.KNeighborsClassifier()
    
    X_test = ...
    y_test = ...
    
    expected = y_test
    predicted = clf.predict(X_test)
    
    conf_matrix = metrics.confusion_matrix(expected, predicted)
    
    >>> print conf_matrix
    >>>  [[1403   87]
         [  56 3159]]
    

    The docs: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html#sklearn.metrics.confusion_matrix

    0 讨论(0)
  • 2020-12-02 05:23

    I wrote a version that works using only numpy. I hope it helps you.

    import numpy as np
    
    def perf_metrics_2X2(yobs, yhat):
        """
        Returns the specificity, sensitivity, positive predictive value, and 
        negative predictive value 
        of a 2X2 table.
    
        where:
        0 = negative case
        1 = positive case
    
        Parameters
        ----------
        yobs :  array of positive and negative ``observed`` cases
        yhat : array of positive and negative ``predicted`` cases
    
        Returns
        -------
        sensitivity  = TP / (TP+FN)
        specificity  = TN / (TN+FP)
        pos_pred_val = TP/ (TP+FP)
        neg_pred_val = TN/ (TN+FN)
    
        Author: Julio Cardenas-Rodriguez
        """
        TP = np.sum(  yobs[yobs==1] == yhat[yobs==1] )
        TN = np.sum(  yobs[yobs==0] == yhat[yobs==0] )
        FP = np.sum(  yobs[yobs==1] == yhat[yobs==0] )
        FN = np.sum(  yobs[yobs==0] == yhat[yobs==1] )
    
        sensitivity  = TP / (TP+FN)
        specificity  = TN / (TN+FP)
        pos_pred_val = TP/ (TP+FP)
        neg_pred_val = TN/ (TN+FN)
    
        return sensitivity, specificity, pos_pred_val, neg_pred_val
    
    0 讨论(0)
  • 2020-12-02 05:24

    #FalseNegatives

    test = pd.merge(Variables_test, Banknote_test,left_index=True, right_index=True)
    Banknote_test_pred = pd.DataFrame(banknote_test_pred)
    Banknote_test_pred.rename(columns={0 :'Predicted'}, inplace=True )
    test = test.reset_index(drop=True).merge(Banknote_test_pred.reset_index(drop=True), left_index=True, right_index=True)
    test['FN'] = np.where((test['Banknote']=="Genuine") & (test['Predicted']=="Forged"),1,0)
    test[test.FN != 0]
    
    0 讨论(0)
提交回复
热议问题