Fastest way to determine if an integer's square root is an integer

前端 未结 30 1697
心在旅途
心在旅途 2020-11-22 02:17

I\'m looking for the fastest way to determine if a long value is a perfect square (i.e. its square root is another integer):

  1. I\'ve done it the ea
相关标签:
30条回答
  • 2020-11-22 02:39

    I ran my own analysis of several of the algorithms in this thread and came up with some new results. You can see those old results in the edit history of this answer, but they're not accurate, as I made a mistake, and wasted time analyzing several algorithms which aren't close. However, pulling lessons from several different answers, I now have two algorithms that crush the "winner" of this thread. Here's the core thing I do differently than everyone else:

    // This is faster because a number is divisible by 2^4 or more only 6% of the time
    // and more than that a vanishingly small percentage.
    while((x & 0x3) == 0) x >>= 2;
    // This is effectively the same as the switch-case statement used in the original
    // answer. 
    if((x & 0x7) != 1) return false;
    

    However, this simple line, which most of the time adds one or two very fast instructions, greatly simplifies the switch-case statement into one if statement. However, it can add to the runtime if many of the tested numbers have significant power-of-two factors.

    The algorithms below are as follows:

    • Internet - Kip's posted answer
    • Durron - My modified answer using the one-pass answer as a base
    • DurronTwo - My modified answer using the two-pass answer (by @JohnnyHeggheim), with some other slight modifications.

    Here is a sample runtime if the numbers are generated using Math.abs(java.util.Random.nextLong())

     0% Scenario{vm=java, trial=0, benchmark=Internet} 39673.40 ns; ?=378.78 ns @ 3 trials
    33% Scenario{vm=java, trial=0, benchmark=Durron} 37785.75 ns; ?=478.86 ns @ 10 trials
    67% Scenario{vm=java, trial=0, benchmark=DurronTwo} 35978.10 ns; ?=734.10 ns @ 10 trials
    
    benchmark   us linear runtime
     Internet 39.7 ==============================
       Durron 37.8 ============================
    DurronTwo 36.0 ===========================
    
    vm: java
    trial: 0
    

    And here is a sample runtime if it's run on the first million longs only:

     0% Scenario{vm=java, trial=0, benchmark=Internet} 2933380.84 ns; ?=56939.84 ns @ 10 trials
    33% Scenario{vm=java, trial=0, benchmark=Durron} 2243266.81 ns; ?=50537.62 ns @ 10 trials
    67% Scenario{vm=java, trial=0, benchmark=DurronTwo} 3159227.68 ns; ?=10766.22 ns @ 3 trials
    
    benchmark   ms linear runtime
     Internet 2.93 ===========================
       Durron 2.24 =====================
    DurronTwo 3.16 ==============================
    
    vm: java
    trial: 0
    

    As you can see, DurronTwo does better for large inputs, because it gets to use the magic trick very very often, but gets clobbered compared to the first algorithm and Math.sqrt because the numbers are so much smaller. Meanwhile, the simpler Durron is a huge winner because it never has to divide by 4 many many times in the first million numbers.

    Here's Durron:

    public final static boolean isPerfectSquareDurron(long n) {
        if(n < 0) return false;
        if(n == 0) return true;
    
        long x = n;
        // This is faster because a number is divisible by 16 only 6% of the time
        // and more than that a vanishingly small percentage.
        while((x & 0x3) == 0) x >>= 2;
        // This is effectively the same as the switch-case statement used in the original
        // answer. 
        if((x & 0x7) == 1) {
    
            long sqrt;
            if(x < 410881L)
            {
                int i;
                float x2, y;
    
                x2 = x * 0.5F;
                y  = x;
                i  = Float.floatToRawIntBits(y);
                i  = 0x5f3759df - ( i >> 1 );
                y  = Float.intBitsToFloat(i);
                y  = y * ( 1.5F - ( x2 * y * y ) );
    
                sqrt = (long)(1.0F/y);
            } else {
                sqrt = (long) Math.sqrt(x);
            }
            return sqrt*sqrt == x;
        }
        return false;
    }
    

    And DurronTwo

    public final static boolean isPerfectSquareDurronTwo(long n) {
        if(n < 0) return false;
        // Needed to prevent infinite loop
        if(n == 0) return true;
    
        long x = n;
        while((x & 0x3) == 0) x >>= 2;
        if((x & 0x7) == 1) {
            long sqrt;
            if (x < 41529141369L) {
                int i;
                float x2, y;
    
                x2 = x * 0.5F;
                y = x;
                i = Float.floatToRawIntBits(y);
                //using the magic number from 
                //http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
                //since it more accurate
                i = 0x5f375a86 - (i >> 1);
                y = Float.intBitsToFloat(i);
                y = y * (1.5F - (x2 * y * y));
                y = y * (1.5F - (x2 * y * y)); //Newton iteration, more accurate
                sqrt = (long) ((1.0F/y) + 0.2);
            } else {
                //Carmack hack gives incorrect answer for n >= 41529141369.
                sqrt = (long) Math.sqrt(x);
            }
            return sqrt*sqrt == x;
        }
        return false;
    }
    

    And my benchmark harness: (Requires Google caliper 0.1-rc5)

    public class SquareRootBenchmark {
        public static class Benchmark1 extends SimpleBenchmark {
            private static final int ARRAY_SIZE = 10000;
            long[] trials = new long[ARRAY_SIZE];
    
            @Override
            protected void setUp() throws Exception {
                Random r = new Random();
                for (int i = 0; i < ARRAY_SIZE; i++) {
                    trials[i] = Math.abs(r.nextLong());
                }
            }
    
    
            public int timeInternet(int reps) {
                int trues = 0;
                for(int i = 0; i < reps; i++) {
                    for(int j = 0; j < ARRAY_SIZE; j++) {
                        if(SquareRootAlgs.isPerfectSquareInternet(trials[j])) trues++;
                    }
                }
    
                return trues;   
            }
    
            public int timeDurron(int reps) {
                int trues = 0;
                for(int i = 0; i < reps; i++) {
                    for(int j = 0; j < ARRAY_SIZE; j++) {
                        if(SquareRootAlgs.isPerfectSquareDurron(trials[j])) trues++;
                    }
                }
    
                return trues;   
            }
    
            public int timeDurronTwo(int reps) {
                int trues = 0;
                for(int i = 0; i < reps; i++) {
                    for(int j = 0; j < ARRAY_SIZE; j++) {
                        if(SquareRootAlgs.isPerfectSquareDurronTwo(trials[j])) trues++;
                    }
                }
    
                return trues;   
            }
        }
    
        public static void main(String... args) {
            Runner.main(Benchmark1.class, args);
        }
    }
    

    UPDATE: I've made a new algorithm that is faster in some scenarios, slower in others, I've gotten different benchmarks based on different inputs. If we calculate modulo 0xFFFFFF = 3 x 3 x 5 x 7 x 13 x 17 x 241, we can eliminate 97.82% of numbers that cannot be squares. This can be (sort of) done in one line, with 5 bitwise operations:

    if (!goodLookupSquares[(int) ((n & 0xFFFFFFl) + ((n >> 24) & 0xFFFFFFl) + (n >> 48))]) return false;
    

    The resulting index is either 1) the residue, 2) the residue + 0xFFFFFF, or 3) the residue + 0x1FFFFFE. Of course, we need to have a lookup table for residues modulo 0xFFFFFF, which is about a 3mb file (in this case stored as ascii text decimal numbers, not optimal but clearly improvable with a ByteBuffer and so forth. But since that is precalculation it doesn't matter so much. You can find the file here (or generate it yourself):

    public final static boolean isPerfectSquareDurronThree(long n) {
        if(n < 0) return false;
        if(n == 0) return true;
    
        long x = n;
        while((x & 0x3) == 0) x >>= 2;
        if((x & 0x7) == 1) {
            if (!goodLookupSquares[(int) ((n & 0xFFFFFFl) + ((n >> 24) & 0xFFFFFFl) + (n >> 48))]) return false;
            long sqrt;
            if(x < 410881L)
            {
                int i;
                float x2, y;
    
                x2 = x * 0.5F;
                y  = x;
                i  = Float.floatToRawIntBits(y);
                i  = 0x5f3759df - ( i >> 1 );
                y  = Float.intBitsToFloat(i);
                y  = y * ( 1.5F - ( x2 * y * y ) );
    
                sqrt = (long)(1.0F/y);
            } else {
                sqrt = (long) Math.sqrt(x);
            }
            return sqrt*sqrt == x;
        }
        return false;
    }
    

    I load it into a boolean array like this:

    private static boolean[] goodLookupSquares = null;
    
    public static void initGoodLookupSquares() throws Exception {
        Scanner s = new Scanner(new File("24residues_squares.txt"));
    
        goodLookupSquares = new boolean[0x1FFFFFE];
    
        while(s.hasNextLine()) {
            int residue = Integer.valueOf(s.nextLine());
            goodLookupSquares[residue] = true;
            goodLookupSquares[residue + 0xFFFFFF] = true;
            goodLookupSquares[residue + 0x1FFFFFE] = true;
        }
    
        s.close();
    }
    

    Example runtime. It beat Durron (version one) in every trial I ran.

     0% Scenario{vm=java, trial=0, benchmark=Internet} 40665.77 ns; ?=566.71 ns @ 10 trials
    33% Scenario{vm=java, trial=0, benchmark=Durron} 38397.60 ns; ?=784.30 ns @ 10 trials
    67% Scenario{vm=java, trial=0, benchmark=DurronThree} 36171.46 ns; ?=693.02 ns @ 10 trials
    
      benchmark   us linear runtime
       Internet 40.7 ==============================
         Durron 38.4 ============================
    DurronThree 36.2 ==========================
    
    vm: java
    trial: 0
    
    0 讨论(0)
  • 2020-11-22 02:39

    Newton's Method with integer arithmetic

    If you wish to avoid non-integer operations you could use the method below. It basically uses Newton's Method modified for integer arithmetic.

    /**
     * Test if the given number is a perfect square.
     * @param n Must be greater than 0 and less
     *    than Long.MAX_VALUE.
     * @return <code>true</code> if n is a perfect
     *    square, or <code>false</code> otherwise.
     */
    public static boolean isSquare(long n)
    {
        long x1 = n;
        long x2 = 1L;
    
        while (x1 > x2)
        {
            x1 = (x1 + x2) / 2L;
            x2 = n / x1;
        }
    
        return x1 == x2 && n % x1 == 0L;
    }
    

    This implementation can not compete with solutions that use Math.sqrt. However, its performance can be improved by using the filtering mechanisms described in some of the other posts.

    0 讨论(0)
  • 2020-11-22 02:40

    The sqrt call is not perfectly accurate, as has been mentioned, but it's interesting and instructive that it doesn't blow away the other answers in terms of speed. After all, the sequence of assembly language instructions for a sqrt is tiny. Intel has a hardware instruction, which isn't used by Java I believe because it doesn't conform to IEEE.

    So why is it slow? Because Java is actually calling a C routine through JNI, and it's actually slower to do so than to call a Java subroutine, which itself is slower than doing it inline. This is very annoying, and Java should have come up with a better solution, ie building in floating point library calls if necessary. Oh well.

    In C++, I suspect all the complex alternatives would lose on speed, but I haven't checked them all. What I did, and what Java people will find usefull, is a simple hack, an extension of the special case testing suggested by A. Rex. Use a single long value as a bit array, which isn't bounds checked. That way, you have 64 bit boolean lookup.

    typedef unsigned long long UVLONG
    UVLONG pp1,pp2;
    
    void init2() {
      for (int i = 0; i < 64; i++) {
        for (int j = 0; j < 64; j++)
          if (isPerfectSquare(i * 64 + j)) {
        pp1 |= (1 << j);
        pp2 |= (1 << i);
        break;
          }
       }
       cout << "pp1=" << pp1 << "," << pp2 << "\n";  
    }
    
    
    inline bool isPerfectSquare5(UVLONG x) {
      return pp1 & (1 << (x & 0x3F)) ? isPerfectSquare(x) : false;
    }
    

    The routine isPerfectSquare5 runs in about 1/3 the time on my core2 duo machine. I suspect that further tweaks along the same lines could reduce the time further on average, but every time you check, you are trading off more testing for more eliminating, so you can't go too much farther on that road.

    Certainly, rather than having a separate test for negative, you could check the high 6 bits the same way.

    Note that all I'm doing is eliminating possible squares, but when I have a potential case I have to call the original, inlined isPerfectSquare.

    The init2 routine is called once to initialize the static values of pp1 and pp2. Note that in my implementation in C++, I'm using unsigned long long, so since you're signed, you'd have to use the >>> operator.

    There is no intrinsic need to bounds check the array, but Java's optimizer has to figure this stuff out pretty quickly, so I don't blame them for that.

    0 讨论(0)
  • 2020-11-22 02:41

    I'm not sure if it would be faster, or even accurate, but you could use John Carmack's Magical Square Root, algorithm to solve the square root faster. You could probably easily test this for all possible 32 bit integers, and validate that you actually got correct results, as it's only an appoximation. However, now that I think about it, using doubles is approximating also, so I'm not sure how that would come into play.

    0 讨论(0)
  • 2020-11-22 02:41

    Square Root of a number, given that the number is a perfect square.

    The complexity is log(n)

    /**
     * Calculate square root if the given number is a perfect square.
     * 
     * Approach: Sum of n odd numbers is equals to the square root of n*n, given 
     * that n is a perfect square.
     *
     * @param number
     * @return squareRoot
     */
    
    public static int calculateSquareRoot(int number) {
    
        int sum=1;
        int count =1;
        int squareRoot=1;
        while(sum<number) {
            count+=2;
            sum+=count;
            squareRoot++;
        }
        return squareRoot;
    }
    
    0 讨论(0)
  • 2020-11-22 02:42

    Project Euler is mentioned in the tags and many of the problems in it require checking numbers >> 2^64. Most of the optimizations mentioned above don't work easily when you are working with an 80 byte buffer.

    I used java BigInteger and a slightly modified version of Newton's method, one that works better with integers. The problem was that exact squares n^2 converged to (n-1) instead of n because n^2-1 = (n-1)(n+1) and the final error was just one step below the final divisor and the algorithm terminated. It was easy to fix by adding one to the original argument before computing the error. (Add two for cube roots, etc.)

    One nice attribute of this algorithm is that you can immediately tell if the number is a perfect square - the final error (not correction) in Newton's method will be zero. A simple modification also lets you quickly calculate floor(sqrt(x)) instead of the closest integer. This is handy with several Euler problems.

    0 讨论(0)
提交回复
热议问题