What is the difference between \"cache unfriendly code\" and the \"cache friendly\" code?
How can I make sure I write cache-efficie
Just piling on: the classic example of cache-unfriendly versus cache-friendly code is the "cache blocking" of matrix multiply.
Naive matrix multiply looks like:
for(i=0;i<N;i++) {
for(j=0;j<N;j++) {
dest[i][j] = 0;
for( k=0;k<N;k++) {
dest[i][j] += src1[i][k] * src2[k][j];
}
}
}
If N
is large, e.g. if N * sizeof(elemType)
is greater than the cache size, then every single access to src2[k][j]
will be a cache miss.
There are many different ways of optimizing this for a cache. Here's a very simple example: instead of reading one item per cache line in the inner loop, use all of the items:
int itemsPerCacheLine = CacheLineSize / sizeof(elemType);
for(i=0;i<N;i++) {
for(j=0;j<N;j += itemsPerCacheLine ) {
for(jj=0;jj<itemsPerCacheLine; jj+) {
dest[i][j+jj] = 0;
}
for( k=0;k<N;k++) {
for(jj=0;jj<itemsPerCacheLine; jj+) {
dest[i][j+jj] += src1[i][k] * src2[k][j+jj];
}
}
}
}
If the cache line size is 64 bytes, and we are operating on 32 bit (4 byte) floats, then there are 16 items per cache line. And the number of cache misses via just this simple transformation is reduced approximately 16-fold.
Fancier transformations operate on 2D tiles, optimize for multiple caches (L1, L2, TLB), and so on.
Some results of googling "cache blocking":
http://stumptown.cc.gt.atl.ga.us/cse6230-hpcta-fa11/slides/11a-matmul-goto.pdf
http://software.intel.com/en-us/articles/cache-blocking-techniques
A nice video animation of an optimized cache blocking algorithm.
http://www.youtube.com/watch?v=IFWgwGMMrh0
Loop tiling is very closely related:
http://en.wikipedia.org/wiki/Loop_tiling
In addition to @Marc Claesen's answer, I think that an instructive classic example of cache-unfriendly code is code that scans a C bidimensional array (e.g. a bitmap image) column-wise instead of row-wise.
Elements that are adjacent in a row are also adjacent in memory, thus accessing them in sequence means accessing them in ascending memory order; this is cache-friendly, since the cache tends to prefetch contiguous blocks of memory.
Instead, accessing such elements column-wise is cache-unfriendly, since elements on the same column are distant in memory from each other (in particular, their distance is equal to the size of the row), so when you use this access pattern you are jumping around in memory, potentially wasting the effort of the cache of retrieving the elements nearby in memory.
And all that it takes to ruin the performance is to go from
// Cache-friendly version - processes pixels which are adjacent in memory
for(unsigned int y=0; y<height; ++y)
{
for(unsigned int x=0; x<width; ++x)
{
... image[y][x] ...
}
}
to
// Cache-unfriendly version - jumps around in memory for no good reason
for(unsigned int x=0; x<width; ++x)
{
for(unsigned int y=0; y<height; ++y)
{
... image[y][x] ...
}
}
This effect can be quite dramatic (several order of magnitudes in speed) in systems with small caches and/or working with big arrays (e.g. 10+ megapixels 24 bpp images on current machines); for this reason, if you have to do many vertical scans, often it's better to rotate the image of 90 degrees first and perform the various analysis later, limiting the cache-unfriendly code just to the rotation.
Welcome to the world of Data Oriented Design. The basic mantra is to Sort, Eliminate Branches, Batch, Eliminate virtual
calls - all steps towards better locality.
Since you tagged the question with C++, here's the obligatory typical C++ Bullshit. Tony Albrecht's Pitfalls of Object Oriented Programming is also a great introduction into the subject.