I\'m implementing combsort. I\'d like to create fixed-size array on the stack, but it shows stack overflow
. When I change it to be on the heap (Rust by Example
In the future, the box
syntax will be stabilized. When it is, it will support this large allocation, as no function call to Box::new
will be needed, thus the array will never be placed on the stack. For example:
#![feature(box_syntax)]
fn main() {
let v = box [0i32; 5_000_000];
println!("{}", v[1_000_000])
}
As far as I can tell, it seems like that code is still trying to allocate the array on the stack first, and then move it into the box after.
It works for me if I switch to Vec<f64>
in place of Box<[f64]>
like this:
fn new_gap(gap: usize) -> usize {
let ngap = ((gap as f64) / 1.3) as usize;
if ngap == 9 || ngap == 10 {
return 11;
}
if ngap < 1 {
return 1;
}
return ngap;
}
fn comb_sort(a: &mut [f64]) {
// previously: [f64]
let xlen = a.len();
let mut gap = xlen;
let mut swapped: bool;
let mut temp: f64;
loop {
swapped = false;
gap = new_gap(gap);
for i in 0..(xlen - gap) {
if a[i] > a[i + gap] {
swapped = true;
temp = a[i];
a[i] = a[i + gap];
a[i + gap] = temp;
}
}
if !(gap > 1 || swapped) {
break;
}
}
}
const N: usize = 10000000;
fn main() {
let mut arr: Vec<f64> = std::iter::repeat(0.0).take(N).collect();
//let mut arr: Box<[f64]> = Box::new([0.0; N]); // previously: [f64; N] = [0.0; N];
for z in 0..(N) {
arr[z] = (N - z) as f64;
}
comb_sort(arr.as_mut_slice());
for z in 1..(N) {
if arr[z] < arr[z - 1] {
print!("!")
}
}
}