How to sort a dataFrame in python pandas by two or more columns?

后端 未结 3 1947
青春惊慌失措
青春惊慌失措 2020-11-22 01:56

Suppose I have a dataframe with columns a, b and c, I want to sort the dataframe by column b in ascending order, and by c

相关标签:
3条回答
  • 2020-11-22 02:24

    As of the 0.17.0 release, the sort method was deprecated in favor of sort_values. sort was completely removed in the 0.20.0 release. The arguments (and results) remain the same:

    df.sort_values(['a', 'b'], ascending=[True, False])
    

    You can use the ascending argument of sort:

    df.sort(['a', 'b'], ascending=[True, False])
    

    For example:

    In [11]: df1 = pd.DataFrame(np.random.randint(1, 5, (10,2)), columns=['a','b'])
    
    In [12]: df1.sort(['a', 'b'], ascending=[True, False])
    Out[12]:
       a  b
    2  1  4
    7  1  3
    1  1  2
    3  1  2
    4  3  2
    6  4  4
    0  4  3
    9  4  3
    5  4  1
    8  4  1
    

    As commented by @renadeen

    Sort isn't in place by default! So you should assign result of the sort method to a variable or add inplace=True to method call.

    that is, if you want to reuse df1 as a sorted DataFrame:

    df1 = df1.sort(['a', 'b'], ascending=[True, False])
    

    or

    df1.sort(['a', 'b'], ascending=[True, False], inplace=True)
    
    0 讨论(0)
  • 2020-11-22 02:28

    As of pandas 0.17.0, DataFrame.sort() is deprecated, and set to be removed in a future version of pandas. The way to sort a dataframe by its values is now is DataFrame.sort_values

    As such, the answer to your question would now be

    df.sort_values(['b', 'c'], ascending=[True, False], inplace=True)
    
    0 讨论(0)
  • 2020-11-22 02:28

    For large dataframes of numeric data, you may see a significant performance improvement via numpy.lexsort, which performs an indirect sort using a sequence of keys:

    import pandas as pd
    import numpy as np
    
    np.random.seed(0)
    
    df1 = pd.DataFrame(np.random.randint(1, 5, (10,2)), columns=['a','b'])
    df1 = pd.concat([df1]*100000)
    
    def pdsort(df1):
        return df1.sort_values(['a', 'b'], ascending=[True, False])
    
    def lex(df1):
        arr = df1.values
        return pd.DataFrame(arr[np.lexsort((-arr[:, 1], arr[:, 0]))])
    
    assert (pdsort(df1).values == lex(df1).values).all()
    
    %timeit pdsort(df1)  # 193 ms per loop
    %timeit lex(df1)     # 143 ms per loop
    

    One peculiarity is that the defined sorting order with numpy.lexsort is reversed: (-'b', 'a') sorts by series a first. We negate series b to reflect we want this series in descending order.

    Be aware that np.lexsort only sorts with numeric values, while pd.DataFrame.sort_values works with either string or numeric values. Using np.lexsort with strings will give: TypeError: bad operand type for unary -: 'str'.

    0 讨论(0)
提交回复
热议问题