As a relatively inexperienced user of the data.table package in R, I\'ve been trying to process one text column into a large number of indicator columns (dummy variables), w
# split the `messy_string` and create a long table, keeping track of the id
DT2 <- setkey(DT[, list(val=unlist(strsplit(messy_string, "\\$"))), by=list(ID, messy_string)], "val")
# add the columns, initialize to 0
DT2[, c(elements_list) := 0L]
# warning expected, re:adding large ammount of columns
# iterate over each value in element_list, assigning 1's ass appropriate
for (el in elements_list)
DT2[el, c(el) := 1L]
# sum by ID
DT2[, lapply(.SD, sum), by=list(ID, messy_string), .SDcols=elements_list]
Note that we are carrying along the messy_string
column since it is cheaper than leaving it behind and then join
ing on ID to get it back.
If you dont need it in the final output, just delete it above.
Creating the sample data:
# sample data, using OP's exmple
set.seed(10)
N <- 1e6 # number of rows
elements_list <- c(outer(letters, letters, FUN = paste, sep = ""))
messy_string_vec <- random_string_fast(N, 2, 5, "$") # Create the messy strings in a single shot.
masterDT <- data.table(ID = c(1:N), messy_string = messy_string_vec, key="ID") # create the data.table
Side Note It is significantly faster to create the random strings all at once and assign the results as a single column than to call the function N times and assign each, one by one.
# Faster way to create the `messy_string` 's
random_string_fast <- function(N, min_length, max_length, separator) {
ints <- seq(from=min_length, to=max_length)
replicate(N, paste(sample(elements_list, sample(ints)), collapse=separator))
}
Comparing Four Methods:
Here is the setup:
library(data.table); library(plyr); library(microbenchmark)
# data.table method - RS
usingDT.RS <- quote({DT <- copy(masterDT);
DT2 <- setkey(DT[, list(val=unlist(strsplit(messy_string, "\\$"))), by=list(ID, messy_string)], "val"); DT2[, c(elements_list) := 0L]
for (el in elements_list) DT2[el, c(el) := 1L]; DT2[, lapply(.SD, sum), by=list(ID, messy_string), .SDcols=elements_list]})
# data.table method - GeekTrader
usingDT.GT <- quote({dt <- copy(masterDT); myFunc()})
# data.table method - GeekTrader, modified by RS
usingDT.GT_Mod <- quote({dt <- copy(masterDT); myFunc.modified()})
# ply method from below
usingPlyr.eddi <- quote({dt <- copy(masterDT); indicators = do.call(rbind.fill, sapply(1:dim(dt)[1], function(i) dt[i, data.frame(t(as.matrix(table(strsplit(messy_string, split = "\\$"))))) ]));
dt = cbind(dt, indicators); dt[is.na(dt)] = 0; dt })
Here are the benchmark results:
microbenchmark( usingDT.RS=eval(usingDT.RS), usingDT.GT=eval(usingDT.GT), usingDT.GT_Mod=eval(usingDT.GT_Mod), usingPlyr.eddi=eval(usingPlyr.eddi), times=5L)
On smaller data:
N = 600
Unit: milliseconds
expr min lq median uq max
1 usingDT.GT 1189.7549 1198.1481 1200.6731 1202.0972 1203.3683
2 usingDT.GT_Mod 581.7003 591.5219 625.7251 630.8144 650.6701
3 usingDT.RS 2586.0074 2602.7917 2637.5281 2819.9589 3517.4654
4 usingPlyr.eddi 2072.4093 2127.4891 2225.5588 2242.8481 2349.6086
N = 1,000
Unit: seconds
expr min lq median uq max
1 usingDT.GT 1.941012 2.053190 2.196100 2.472543 3.096096
2 usingDT.RS 3.107938 3.344764 3.903529 4.010292 4.724700
3 usingPlyr 3.297803 3.435105 3.625319 3.812862 4.118307
N = 2,500
Unit: seconds
expr min lq median uq max
1 usingDT.GT 4.711010 5.210061 5.291999 5.307689 7.118794
2 usingDT.GT_Mod 2.037558 2.092953 2.608662 2.638984 3.616596
3 usingDT.RS 5.253509 5.334890 6.474915 6.740323 7.275444
4 usingPlyr.eddi 7.842623 8.612201 9.142636 9.420615 11.102888
N = 5,000
expr min lq median uq max
1 usingDT.GT 8.900226 9.058337 9.233387 9.622531 10.839409
2 usingDT.GT_Mod 4.112934 4.293426 4.460745 4.584133 6.128176
3 usingDT.RS 8.076821 8.097081 8.404799 8.800878 9.580892
4 usingPlyr.eddi 13.260828 14.297614 14.523016 14.657193 16.698229
# dropping the slower two from the tests:
microbenchmark( usingDT.RS=eval(usingDT.RS), usingDT.GT=eval(usingDT.GT), usingDT.GT_Mod=eval(usingDT.GT_Mod), times=6L)
N = 10,000
Unit: seconds
expr min lq median uq max
1 usingDT.GT_Mod 8.426744 8.739659 8.750604 9.118382 9.848153
2 usingDT.RS 15.260702 15.564495 15.742855 16.024293 16.249556
N = 25,000
... (still running)
Functions Used in benchmarking:
# original random string function
random_string <- function(min_length, max_length, separator) {
selection <- paste(sample(elements_list, ceiling(runif(1, min_length, max_length))), collapse = separator)
return(selection)
}
# GeekTrader's function
myFunc <- function() {
ll <- strsplit(dt[,messy_string], split="\\$")
COLS <- do.call(rbind,
lapply(1:length(ll),
function(i) {
data.frame(
ID= rep(i, length(ll[[i]])),
COL = ll[[i]],
VAL= rep(1, length(ll[[i]]))
)
}
)
)
res <- as.data.table(tapply(COLS$VAL, list(COLS$ID, COLS$COL), FUN = length ))
dt <- cbind(dt, res)
for (j in names(dt))
set(dt,which(is.na(dt[[j]])),j,0)
return(dt)
}
# Improvements to @GeekTrader's `myFunc` -RS '
myFunc.modified <- function() {
ll <- strsplit(dt[,messy_string], split="\\$")
## MODIFICATIONS:
# using `rbindlist` instead of `do.call(rbind.. )`
COLS <- rbindlist( lapply(1:length(ll),
function(i) {
data.frame(
ID= rep(i, length(ll[[i]])),
COL = ll[[i]],
VAL= rep(1, length(ll[[i]])),
# MODICIATION: Not coercing to factors
stringsAsFactors = FALSE
)
}
)
)
# MODIFICATION: Preserve as matrix, the output of tapply
res2 <- tapply(COLS$VAL, list(COLS$ID, COLS$COL), FUN = length )
# FLATTEN into a data.table
resdt <- data.table(r=c(res2))
# FIND & REPLACE NA's of single column
resdt[is.na(r), r:=0L]
# cbind with dt, a matrix, with the same attributes as `res2`
cbind(dt,
matrix(resdt[[1]], ncol=ncol(res2), byrow=FALSE, dimnames=dimnames(res2)))
}
### Benchmarks comparing the two versions of GeekTrader's function:
orig = quote({dt <- copy(masterDT); myFunc()})
modified = quote({dt <- copy(masterDT); myFunc.modified()})
microbenchmark(Modified = eval(modified), Orig = eval(orig), times=20L)
# Unit: milliseconds
# expr min lq median uq max
# 1 Modified 895.025 971.0117 1011.216 1189.599 2476.972
# 2 Orig 1953.638 2009.1838 2106.412 2230.326 2356.802
Here's a somewhat newer approach, using cSplit_e()
from the splitstackshape
package.
library(splitstackshape)
cSplit_e(dt, split.col = "String", sep = "$", type = "character",
mode = "binary", fixed = TRUE, fill = 0)
# ID String String_a String_b String_c
#1 1 a$b 1 1 0
#2 2 b$c 0 1 1
#3 3 c 0 0 1
UPDATE : VERSION 3
Found even faster way. This function is also highly memory efficient.
Primary reason previous function was slow because of copy/assignments happening inside lapply
loop as well as rbinding
of the result.
In following version, we preallocate matrix with appropriate size, and then change values at appropriate coordinates, which makes it very fast compared to other looping versions.
funcGT3 <- function() {
#Get list of column names in result
resCol <- unique(dt[, unlist(strsplit(messy_string, split="\\$"))])
#Get dimension of result
nresCol <- length(resCol)
nresRow <- nrow(dt)
#Create empty matrix with dimensions same as desired result
mat <- matrix(rep(0, nresRow * nresCol), nrow = nresRow, dimnames = list(as.character(1:nresRow), resCol))
#split each messy_string by $
ll <- strsplit(dt[,messy_string], split="\\$")
#Get coordinates of mat which we need to set to 1
coords <- do.call(rbind, lapply(1:length(ll), function(i) cbind(rep(i, length(ll[[i]])), ll[[i]] )))
#Set mat to 1 at appropriate coordinates
mat[coords] <- 1
#Bind the mat to original data.table
return(cbind(dt, mat))
}
result <- funcGT3() #result for 1000 rows in dt
result
ID messy_string zn tc sv db yx st ze qs wq oe cv ut is kh kk im le qg rq po wd kc un ft ye if zl zt wy et rg iu
1: 1 zn$tc$sv$db$yx 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2: 2 st$ze$qs$wq 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3: 3 oe$cv$ut$is 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4: 4 kh$kk$im$le$qg 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5: 5 rq$po$wd$kc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
---
996: 996 rp$cr$tb$sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
997: 997 cz$wy$rj$he 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
998: 998 cl$rr$bm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
999: 999 sx$hq$zy$zd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1000: 1000 bw$cw$pw$rq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Benchmark againt version 2 suggested by Ricardo (this is for 250K rows in data) :
Unit: seconds
expr min lq median uq max neval
GT2 104.68672 104.68672 104.68672 104.68672 104.68672 1
GT3 15.15321 15.15321 15.15321 15.15321 15.15321 1
VERSION 1 Following is version 1 of suggested answer
set.seed(10)
elements_list <- c(outer(letters, letters, FUN = paste, sep = ""))
random_string <- function(min_length, max_length, separator) {
selection <- paste(sample(elements_list, ceiling(runif(1, min_length, max_length))), collapse = separator)
return(selection)
}
dt <- data.table(ID = c(1:1000), messy_string = "")
dt[ , messy_string := random_string(2, 5, "$"), by = ID]
myFunc <- function() {
ll <- strsplit(dt[,messy_string], split="\\$")
COLS <- do.call(rbind,
lapply(1:length(ll),
function(i) {
data.frame(
ID= rep(i, length(ll[[i]])),
COL = ll[[i]],
VAL= rep(1, length(ll[[i]]))
)
}
)
)
res <- as.data.table(tapply(COLS$VAL, list(COLS$ID, COLS$COL), FUN = length ))
dt <- cbind(dt, res)
for (j in names(dt))
set(dt,which(is.na(dt[[j]])),j,0)
return(dt)
}
create_indicators <- function(search_list, searched_string) {
y <- rep(0, length(search_list))
for(j in 1:length(search_list)) {
x <- regexpr(search_list[j], searched_string)
x <- x[1]
y[j] <- ifelse(x > 0, 1, 0)
}
return(y)
}
OPFunc <- function() {
indicators <- matrix(0, nrow = nrow(dt), ncol = length(elements_list))
for(n in 1:nrow(dt)) {
indicators[n, ] <- dt[n, create_indicators(elements_list, messy_string)]
}
indicators <- data.table(indicators)
setnames(indicators, elements_list)
dt <- cbind(dt, indicators)
return(dt)
}
library(plyr)
plyrFunc <- function() {
indicators = do.call(rbind.fill, sapply(1:dim(dt)[1], function(i)
dt[i,
data.frame(t(as.matrix(table(strsplit(messy_string,
split = "\\$")))))
]))
dt = cbind(dt, indicators)
#dt[is.na(dt)] = 0 #THIS DOESN'T WORK. USING FOLLOWING INSTEAD
for (j in names(dt))
set(dt,which(is.na(dt[[j]])),j,0)
return(dt)
}
BENCHMARK
system.time(res <- myFunc())
## user system elapsed
## 1.01 0.00 1.01
system.time(res2 <- OPFunc())
## user system elapsed
## 21.58 0.00 21.61
system.time(res3 <- plyrFunc())
## user system elapsed
## 1.81 0.00 1.81
VERSION 2 : Suggested by Ricardo
I'm posting this here instead of in my answer as the framework is really @GeekTrader's -Rick_
myFunc.modified <- function() {
ll <- strsplit(dt[,messy_string], split="\\$")
## MODIFICATIONS:
# using `rbindlist` instead of `do.call(rbind.. )`
COLS <- rbindlist( lapply(1:length(ll),
function(i) {
data.frame(
ID= rep(i, length(ll[[i]])),
COL = ll[[i]],
VAL= rep(1, length(ll[[i]])),
# MODICIATION: Not coercing to factors
stringsAsFactors = FALSE
)
}
)
)
# MODIFICATION: Preserve as matrix, the output of tapply
res2 <- tapply(COLS$VAL, list(COLS$ID, COLS$COL), FUN = length )
# FLATTEN into a data.table
resdt <- data.table(r=c(res2))
# FIND & REPLACE NA's of single column
resdt[is.na(r), r:=0L]
# cbind with dt, a matrix, with the same attributes as `res2`
cbind(dt,
matrix(resdt[[1]], ncol=ncol(res2), byrow=FALSE, dimnames=dimnames(res2)))
}
### Benchmarks:
orig = quote({dt <- copy(masterDT); myFunc()})
modified = quote({dt <- copy(masterDT); myFunc.modified()})
microbenchmark(Modified = eval(modified), Orig = eval(orig), times=20L)
# Unit: milliseconds
# expr min lq median uq max
# 1 Modified 895.025 971.0117 1011.216 1189.599 2476.972
# 2 Orig 1953.638 2009.1838 2106.412 2230.326 2356.802
Here is an approach using rapply
and table
.
I'm sure there would be a slightly faster approach than using table here, but it is still slightly faster than the myfunc.Modified
from @ricardo;s answer
# a copy with enough column pointers available
dtr <- alloc.col(copy(dt) ,1000L)
rapplyFun <- function(){
ll <- strsplit(dtr[, messy_string], '\\$')
Vals <- rapply(ll, classes = 'character', f= table, how = 'replace')
Names <- unique(rapply(Vals, names))
dtr[, (Names) := 0L]
for(ii in seq_along(Vals)){
for(jj in names(Vals[[ii]])){
set(dtr, i = ii, j = jj, value =Vals[[ii]][jj])
}
}
}
microbenchmark(myFunc.modified(), rapplyFun(),times=5)
Unit: milliseconds
# expr min lq median uq max neval
# myFunc.modified() 395.1719 396.8706 399.3218 400.6353 401.1700 5
# rapplyFun() 308.9103 309.5763 309.9368 310.2971 310.3463 5
Here's a ~10x faster version using rbind.fill
.
library(plyr)
indicators = do.call(rbind.fill, sapply(1:dim(dt)[1], function(i)
dt[i,
data.frame(t(as.matrix(table(strsplit(messy_string,
split = "\\$")))))
]))
dt = cbind(dt, indicators)
# dt[is.na(dt)] = 0
# faster NA replace (thanks geektrader)
for (j in names(dt))
set(dt, which(is.na(dt[[j]])), j, 0L)
Here's another solution, that constructs a sparse matrix object instead of what you have. This shaves off a lot of time AND memory.
It produces ordered results and even with conversion to data.table
it's faster than GT3 with 0L
and 1L
and without reordering (this could be because I use a different method for arriving at the required coordinates - I didn't go through the GT3 algo), however if you don't convert and keep it as a sparse matrix it's about 10-20x faster than GT3 (and has a much smaller memory footprint).
library(Matrix)
strings = strsplit(dt$messy_string, split = "$", fixed = TRUE)
element.map = data.table(el = elements_list, n = seq_along(elements_list), key = "el")
tmp = data.table(n = seq_along(strings), each = unlist(lapply(strings, length)))
rows = tmp[, rep(n, each = each), by = n][, V1]
cols = element.map[J(unlist(strings))][,n]
dt.sparse = sparseMatrix(rows, cols, x = 1,
dims = c(max(rows), length(elements_list)))
# optional, should be avoided until absolutely necessary
dt = cbind(dt, as.data.table(as.matrix(dt.sparse)))
setnames(dt, c('id', 'messy_string', elements_list))
The idea is to split to strings, then use a data.table
as a map object to map each substring to its correct column position. From there on it's just a matter of figuring out the rows correctly and filling in the matrix.