I recently posted this question on the r-help mailing list but got no answers, so I thought I would post it here as well and see if there were any suggestions.
I am
Another try (Marek's is faster)
cumsd2 <- function(y) {
n <- nrow(y)
apply(y,2,function(i) {
Xmeans <- lapply(1:n,function(z) rep(sum(i[1:z])/z,z))
Xs <- sapply(1:n, function(z) i[1:z])
sapply(2:n,function(z) sqrt(sum((Xs[[z]]-Xmeans[[z]])^2,na.rm = T)/(z-1)))
})
}
You could use cumsum
to compute necessary sums from direct formulas for variance/sd to vectorized operations on matrix:
cumsd_mod <- function(mat) {
cum_var <- function(x) {
ind_na <- !is.na(x)
nn <- cumsum(ind_na)
x[!ind_na] <- 0
cumsum(x^2) / (nn-1) - (cumsum(x))^2/(nn-1)/nn
}
v <- sqrt(apply(mat,2,cum_var))
v[is.na(mat) | is.infinite(v)] <- NA
v
}
just for comparison:
set.seed(2765374)
X <- matrix(rnorm(1000),100,10)
X[cbind(1:10,1:10)] <- NA # to have some NA's
all.equal(cumsd(X),cumsd_mod(X))
# [1] TRUE
And about timing:
X <- matrix(rnorm(100000),1000,100)
system.time(cumsd(X))
# user system elapsed
# 7.94 0.00 7.97
system.time(cumsd_mod(X))
# user system elapsed
# 0.03 0.00 0.03