// let\'s say there is a list of 1000+ URLs
string[] urls = { \"http://google.com\", \"http://yahoo.com\", ... };
// now let\'s send HTTP requests to each of these
Old question, new answer. @vitidev had a block of code that was reused almost intact in a project I reviewed. After discussing with a few colleagues one asked "Why don't you just use the built-in TPL methods?" ActionBlock looks like the winner there. https://msdn.microsoft.com/en-us/library/hh194773(v=vs.110).aspx. Probably won't end up changing any existing code but will definitely look to adopt this nuget and reuse Mr. Softy's best practice for throttled parallelism.
Essentially you're going to want to create an Action or Task for each URL that you want to hit, put them in a List, and then process that list, limiting the number that can be processed in parallel.
My blog post shows how to do this both with Tasks and with Actions, and provides a sample project you can download and run to see both in action.
If using Actions, you can use the built-in .Net Parallel.Invoke function. Here we limit it to running at most 20 threads in parallel.
var listOfActions = new List<Action>();
foreach (var url in urls)
{
var localUrl = url;
// Note that we create the Task here, but do not start it.
listOfTasks.Add(new Task(() => CallUrl(localUrl)));
}
var options = new ParallelOptions {MaxDegreeOfParallelism = 20};
Parallel.Invoke(options, listOfActions.ToArray());
With Tasks there is no built-in function. However, you can use the one that I provide on my blog.
/// <summary>
/// Starts the given tasks and waits for them to complete. This will run, at most, the specified number of tasks in parallel.
/// <para>NOTE: If one of the given tasks has already been started, an exception will be thrown.</para>
/// </summary>
/// <param name="tasksToRun">The tasks to run.</param>
/// <param name="maxTasksToRunInParallel">The maximum number of tasks to run in parallel.</param>
/// <param name="cancellationToken">The cancellation token.</param>
public static async Task StartAndWaitAllThrottledAsync(IEnumerable<Task> tasksToRun, int maxTasksToRunInParallel, CancellationToken cancellationToken = new CancellationToken())
{
await StartAndWaitAllThrottledAsync(tasksToRun, maxTasksToRunInParallel, -1, cancellationToken);
}
/// <summary>
/// Starts the given tasks and waits for them to complete. This will run the specified number of tasks in parallel.
/// <para>NOTE: If a timeout is reached before the Task completes, another Task may be started, potentially running more than the specified maximum allowed.</para>
/// <para>NOTE: If one of the given tasks has already been started, an exception will be thrown.</para>
/// </summary>
/// <param name="tasksToRun">The tasks to run.</param>
/// <param name="maxTasksToRunInParallel">The maximum number of tasks to run in parallel.</param>
/// <param name="timeoutInMilliseconds">The maximum milliseconds we should allow the max tasks to run in parallel before allowing another task to start. Specify -1 to wait indefinitely.</param>
/// <param name="cancellationToken">The cancellation token.</param>
public static async Task StartAndWaitAllThrottledAsync(IEnumerable<Task> tasksToRun, int maxTasksToRunInParallel, int timeoutInMilliseconds, CancellationToken cancellationToken = new CancellationToken())
{
// Convert to a list of tasks so that we don't enumerate over it multiple times needlessly.
var tasks = tasksToRun.ToList();
using (var throttler = new SemaphoreSlim(maxTasksToRunInParallel))
{
var postTaskTasks = new List<Task>();
// Have each task notify the throttler when it completes so that it decrements the number of tasks currently running.
tasks.ForEach(t => postTaskTasks.Add(t.ContinueWith(tsk => throttler.Release())));
// Start running each task.
foreach (var task in tasks)
{
// Increment the number of tasks currently running and wait if too many are running.
await throttler.WaitAsync(timeoutInMilliseconds, cancellationToken);
cancellationToken.ThrowIfCancellationRequested();
task.Start();
}
// Wait for all of the provided tasks to complete.
// We wait on the list of "post" tasks instead of the original tasks, otherwise there is a potential race condition where the throttler's using block is exited before some Tasks have had their "post" action completed, which references the throttler, resulting in an exception due to accessing a disposed object.
await Task.WhenAll(postTaskTasks.ToArray());
}
}
And then creating your list of Tasks and calling the function to have them run, with say a maximum of 20 simultaneous at a time, you could do this:
var listOfTasks = new List<Task>();
foreach (var url in urls)
{
var localUrl = url;
// Note that we create the Task here, but do not start it.
listOfTasks.Add(new Task(async () => await CallUrl(localUrl)));
}
await Tasks.StartAndWaitAllThrottledAsync(listOfTasks, 20);