How do I convert a numpy.datetime64
object to a datetime.datetime
(or Timestamp
)?
In the following code, I create a datetime,
Some solutions work well for me but numpy will deprecate some parameters.
The solution that work better for me is to read the date as a pandas datetime and excract explicitly the year, month and day of a pandas object.
The following code works for the most common situation.
def format_dates(dates):
dt = pd.to_datetime(dates)
try: return [datetime.date(x.year, x.month, x.day) for x in dt]
except TypeError: return datetime.date(dt.year, dt.month, dt.day)
>>> dt64.tolist()
datetime.datetime(2012, 5, 1, 0, 0)
For DatetimeIndex
, the tolist
returns a list of datetime
objects. For a single datetime64
object it returns a single datetime
object.
If you want to convert an entire pandas series of datetimes to regular python datetimes, you can also use .to_pydatetime()
.
pd.date_range('20110101','20110102',freq='H').to_pydatetime()
> [datetime.datetime(2011, 1, 1, 0, 0) datetime.datetime(2011, 1, 1, 1, 0)
datetime.datetime(2011, 1, 1, 2, 0) datetime.datetime(2011, 1, 1, 3, 0)
....
It also supports timezones:
pd.date_range('20110101','20110102',freq='H').tz_localize('UTC').tz_convert('Australia/Sydney').to_pydatetime()
[ datetime.datetime(2011, 1, 1, 11, 0, tzinfo=<DstTzInfo 'Australia/Sydney' EST+11:00:00 DST>)
datetime.datetime(2011, 1, 1, 12, 0, tzinfo=<DstTzInfo 'Australia/Sydney' EST+11:00:00 DST>)
....
NOTE: If you are operating on a Pandas Series you cannot call to_pydatetime()
on the entire series. You will need to call .to_pydatetime()
on each individual datetime64 using a list comprehension or something similar:
datetimes = [val.to_pydatetime() for val in df.problem_datetime_column]
import numpy as np
import pandas as pd
def np64toDate(np64):
return pd.to_datetime(str(np64)).replace(tzinfo=None).to_datetime()
use this function to get pythons native datetime object
This post has been up for 4 years and I still struggled with this conversion problem - so the issue is still active in 2017 in some sense. I was somewhat shocked that the numpy documentation does not readily offer a simple conversion algorithm but that's another story.
I have come across another way to do the conversion that only involves modules numpy
and datetime
, it does not require pandas to be imported which seems to me to be a lot of code to import for such a simple conversion. I noticed that datetime64.astype(datetime.datetime)
will return a datetime.datetime
object if the original datetime64
is in micro-second units while other units return an integer timestamp. I use module xarray
for data I/O from Netcdf files which uses the datetime64
in nanosecond units making the conversion fail unless you first convert to micro-second units. Here is the example conversion code,
import numpy as np
import datetime
def convert_datetime64_to_datetime( usert: np.datetime64 )->datetime.datetime:
t = np.datetime64( usert, 'us').astype(datetime.datetime)
return t
Its only tested on my machine, which is Python 3.6 with a recent 2017 Anaconda distribution. I have only looked at scalar conversion and have not checked array based conversions although I'm guessing it will be good. Nor have I looked at the numpy datetime64 source code to see if the operation makes sense or not.
indeed, all of these datetime types can be difficult, and potentially problematic (must keep careful track of timezone information). here's what i have done, though i admit that i am concerned that at least part of it is "not by design". also, this can be made a bit more compact as needed. starting with a numpy.datetime64 dt_a:
dt_a
numpy.datetime64('2015-04-24T23:11:26.270000-0700')
dt_a1 = dt_a.tolist() # yields a datetime object in UTC, but without tzinfo
dt_a1
datetime.datetime(2015, 4, 25, 6, 11, 26, 270000)
# now, make your "aware" datetime:
dt_a2=datetime.datetime(*list(dt_a1.timetuple()[:6]) + [dt_a1.microsecond], tzinfo=pytz.timezone('UTC'))
... and of course, that can be compressed into one line as needed.