Converting between datetime, Timestamp and datetime64

前端 未结 12 1301
傲寒
傲寒 2020-11-22 01:43

How do I convert a numpy.datetime64 object to a datetime.datetime (or Timestamp)?

In the following code, I create a datetime,

相关标签:
12条回答
  • 2020-11-22 01:59

    You can just use the pd.Timestamp constructor. The following diagram may be useful for this and related questions.

    Conversions between time representations

    0 讨论(0)
  • 2020-11-22 01:59

    One option is to use str, and then to_datetime (or similar):

    In [11]: str(dt64)
    Out[11]: '2012-05-01T01:00:00.000000+0100'
    
    In [12]: pd.to_datetime(str(dt64))
    Out[12]: datetime.datetime(2012, 5, 1, 1, 0, tzinfo=tzoffset(None, 3600))
    

    Note: it is not equal to dt because it's become "offset-aware":

    In [13]: pd.to_datetime(str(dt64)).replace(tzinfo=None)
    Out[13]: datetime.datetime(2012, 5, 1, 1, 0)
    

    This seems inelegant.

    .

    Update: this can deal with the "nasty example":

    In [21]: dt64 = numpy.datetime64('2002-06-28T01:00:00.000000000+0100')
    
    In [22]: pd.to_datetime(str(dt64)).replace(tzinfo=None)
    Out[22]: datetime.datetime(2002, 6, 28, 1, 0)
    
    0 讨论(0)
  • 2020-11-22 02:06

    Welcome to hell.

    You can just pass a datetime64 object to pandas.Timestamp:

    In [16]: Timestamp(numpy.datetime64('2012-05-01T01:00:00.000000'))
    Out[16]: <Timestamp: 2012-05-01 01:00:00>
    

    I noticed that this doesn't work right though in NumPy 1.6.1:

    numpy.datetime64('2012-05-01T01:00:00.000000+0100')
    

    Also, pandas.to_datetime can be used (this is off of the dev version, haven't checked v0.9.1):

    In [24]: pandas.to_datetime('2012-05-01T01:00:00.000000+0100')
    Out[24]: datetime.datetime(2012, 5, 1, 1, 0, tzinfo=tzoffset(None, 3600))
    
    0 讨论(0)
  • 2020-11-22 02:06

    I think there could be a more consolidated effort in an answer to better explain the relationship between Python's datetime module, numpy's datetime64/timedelta64 and pandas' Timestamp/Timedelta objects.

    The datetime standard library of Python

    The datetime standard library has four main objects

    • time - only time, measured in hours, minutes, seconds and microseconds
    • date - only year, month and day
    • datetime - All components of time and date
    • timedelta - An amount of time with maximum unit of days

    Create these four objects

    >>> import datetime
    >>> datetime.time(hour=4, minute=3, second=10, microsecond=7199)
    datetime.time(4, 3, 10, 7199)
    
    >>> datetime.date(year=2017, month=10, day=24)
    datetime.date(2017, 10, 24)
    
    >>> datetime.datetime(year=2017, month=10, day=24, hour=4, minute=3, second=10, microsecond=7199)
    datetime.datetime(2017, 10, 24, 4, 3, 10, 7199)
    
    >>> datetime.timedelta(days=3, minutes = 55)
    datetime.timedelta(3, 3300)
    
    >>> # add timedelta to datetime
    >>> datetime.timedelta(days=3, minutes = 55) + \
        datetime.datetime(year=2017, month=10, day=24, hour=4, minute=3, second=10, microsecond=7199)
    datetime.datetime(2017, 10, 27, 4, 58, 10, 7199)
    

    NumPy's datetime64 and timedelta64 objects

    NumPy has no separate date and time objects, just a single datetime64 object to represent a single moment in time. The datetime module's datetime object has microsecond precision (one-millionth of a second). NumPy's datetime64 object allows you to set its precision from hours all the way to attoseconds (10 ^ -18). It's constructor is more flexible and can take a variety of inputs.

    Construct NumPy's datetime64 and timedelta64 objects

    Pass an integer with a string for the units. See all units here. It gets converted to that many units after the UNIX epoch: Jan 1, 1970

    >>> np.datetime64(5, 'ns') 
    numpy.datetime64('1970-01-01T00:00:00.000000005')
    
    >>> np.datetime64(1508887504, 's')
    numpy.datetime64('2017-10-24T23:25:04')
    

    You can also use strings as long as they are in ISO 8601 format.

    >>> np.datetime64('2017-10-24')
    numpy.datetime64('2017-10-24')
    

    Timedeltas have a single unit

    >>> np.timedelta64(5, 'D') # 5 days
    >>> np.timedelta64(10, 'h') 10 hours
    

    Can also create them by subtracting two datetime64 objects

    >>> np.datetime64('2017-10-24T05:30:45.67') - np.datetime64('2017-10-22T12:35:40.123')
    numpy.timedelta64(147305547,'ms')
    

    Pandas Timestamp and Timedelta build much more functionality on top of NumPy

    A pandas Timestamp is a moment in time very similar to a datetime but with much more functionality. You can construct them with either pd.Timestamp or pd.to_datetime.

    >>> pd.Timestamp(1239.1238934) #defautls to nanoseconds
    Timestamp('1970-01-01 00:00:00.000001239')
    
    >>> pd.Timestamp(1239.1238934, unit='D') # change units
    Timestamp('1973-05-24 02:58:24.355200')
    
    >>> pd.Timestamp('2017-10-24 05') # partial strings work
    Timestamp('2017-10-24 05:00:00')
    

    pd.to_datetime works very similarly (with a few more options) and can convert a list of strings into Timestamps.

    >>> pd.to_datetime('2017-10-24 05')
    Timestamp('2017-10-24 05:00:00')
    
    >>> pd.to_datetime(['2017-1-1', '2017-1-2'])
    DatetimeIndex(['2017-01-01', '2017-01-02'], dtype='datetime64[ns]', freq=None)
    

    Converting Python datetime to datetime64 and Timestamp

    >>> dt = datetime.datetime(year=2017, month=10, day=24, hour=4, 
                       minute=3, second=10, microsecond=7199)
    >>> np.datetime64(dt)
    numpy.datetime64('2017-10-24T04:03:10.007199')
    
    >>> pd.Timestamp(dt) # or pd.to_datetime(dt)
    Timestamp('2017-10-24 04:03:10.007199')
    

    Converting numpy datetime64 to datetime and Timestamp

    >>> dt64 = np.datetime64('2017-10-24 05:34:20.123456')
    >>> unix_epoch = np.datetime64(0, 's')
    >>> one_second = np.timedelta64(1, 's')
    >>> seconds_since_epoch = (dt64 - unix_epoch) / one_second
    >>> seconds_since_epoch
    1508823260.123456
    
    >>> datetime.datetime.utcfromtimestamp(seconds_since_epoch)
    >>> datetime.datetime(2017, 10, 24, 5, 34, 20, 123456)
    

    Convert to Timestamp

    >>> pd.Timestamp(dt64)
    Timestamp('2017-10-24 05:34:20.123456')
    

    Convert from Timestamp to datetime and datetime64

    This is quite easy as pandas timestamps are very powerful

    >>> ts = pd.Timestamp('2017-10-24 04:24:33.654321')
    
    >>> ts.to_pydatetime()   # Python's datetime
    datetime.datetime(2017, 10, 24, 4, 24, 33, 654321)
    
    >>> ts.to_datetime64()
    numpy.datetime64('2017-10-24T04:24:33.654321000')
    
    0 讨论(0)
  • 2020-11-22 02:09

    I've come back to this answer more times than I can count, so I decided to throw together a quick little class, which converts a Numpy datetime64 value to Python datetime value. I hope it helps others out there.

    from datetime import datetime
    import pandas as pd
    
    class NumpyConverter(object):
        @classmethod
        def to_datetime(cls, dt64, tzinfo=None):
            """
            Converts a Numpy datetime64 to a Python datetime.
            :param dt64: A Numpy datetime64 variable
            :type dt64: numpy.datetime64
            :param tzinfo: The timezone the date / time value is in
            :type tzinfo: pytz.timezone
            :return: A Python datetime variable
            :rtype: datetime
            """
            ts = pd.to_datetime(dt64)
            if tzinfo is not None:
                return datetime(ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.second, tzinfo=tzinfo)
            return datetime(ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.second)
    

    I'm gonna keep this in my tool bag, something tells me I'll need it again.

    0 讨论(0)
  • 2020-11-22 02:11

    To convert numpy.datetime64 to datetime object that represents time in UTC on numpy-1.8:

    >>> from datetime import datetime
    >>> import numpy as np
    >>> dt = datetime.utcnow()
    >>> dt
    datetime.datetime(2012, 12, 4, 19, 51, 25, 362455)
    >>> dt64 = np.datetime64(dt)
    >>> ts = (dt64 - np.datetime64('1970-01-01T00:00:00Z')) / np.timedelta64(1, 's')
    >>> ts
    1354650685.3624549
    >>> datetime.utcfromtimestamp(ts)
    datetime.datetime(2012, 12, 4, 19, 51, 25, 362455)
    >>> np.__version__
    '1.8.0.dev-7b75899'
    

    The above example assumes that a naive datetime object is interpreted by np.datetime64 as time in UTC.


    To convert datetime to np.datetime64 and back (numpy-1.6):

    >>> np.datetime64(datetime.utcnow()).astype(datetime)
    datetime.datetime(2012, 12, 4, 13, 34, 52, 827542)
    

    It works both on a single np.datetime64 object and a numpy array of np.datetime64.

    Think of np.datetime64 the same way you would about np.int8, np.int16, etc and apply the same methods to convert beetween Python objects such as int, datetime and corresponding numpy objects.

    Your "nasty example" works correctly:

    >>> from datetime import datetime
    >>> import numpy 
    >>> numpy.datetime64('2002-06-28T01:00:00.000000000+0100').astype(datetime)
    datetime.datetime(2002, 6, 28, 0, 0)
    >>> numpy.__version__
    '1.6.2' # current version available via pip install numpy
    

    I can reproduce the long value on numpy-1.8.0 installed as:

    pip install git+https://github.com/numpy/numpy.git#egg=numpy-dev
    

    The same example:

    >>> from datetime import datetime
    >>> import numpy
    >>> numpy.datetime64('2002-06-28T01:00:00.000000000+0100').astype(datetime)
    1025222400000000000L
    >>> numpy.__version__
    '1.8.0.dev-7b75899'
    

    It returns long because for numpy.datetime64 type .astype(datetime) is equivalent to .astype(object) that returns Python integer (long) on numpy-1.8.

    To get datetime object you could:

    >>> dt64.dtype
    dtype('<M8[ns]')
    >>> ns = 1e-9 # number of seconds in a nanosecond
    >>> datetime.utcfromtimestamp(dt64.astype(int) * ns)
    datetime.datetime(2002, 6, 28, 0, 0)
    

    To get datetime64 that uses seconds directly:

    >>> dt64 = numpy.datetime64('2002-06-28T01:00:00.000000000+0100', 's')
    >>> dt64.dtype
    dtype('<M8[s]')
    >>> datetime.utcfromtimestamp(dt64.astype(int))
    datetime.datetime(2002, 6, 28, 0, 0)
    

    The numpy docs say that the datetime API is experimental and may change in future numpy versions.

    0 讨论(0)
提交回复
热议问题