Querying Spark SQL DataFrame with complex types

后端 未结 3 1050
难免孤独
难免孤独 2020-11-22 01:18

How Can I query an RDD with complex types such as maps/arrays? for example, when I was writing this test code:

case class Test(name: String, map: Map[String,         


        
相关标签:
3条回答
  • 2020-11-22 01:49

    It depends on a type of the column. Lets start with some dummy data:

    import org.apache.spark.sql.functions.{udf, lit}
    import scala.util.Try
    
    case class SubRecord(x: Int)
    case class ArrayElement(foo: String, bar: Int, vals: Array[Double])
    case class Record(
      an_array: Array[Int], a_map: Map[String, String], 
      a_struct: SubRecord, an_array_of_structs: Array[ArrayElement])
    
    
    val df = sc.parallelize(Seq(
      Record(Array(1, 2, 3), Map("foo" -> "bar"), SubRecord(1),
             Array(
               ArrayElement("foo", 1, Array(1.0, 2.0, 2.0)),
               ArrayElement("bar", 2, Array(3.0, 4.0, 5.0)))),
      Record(Array(4, 5, 6), Map("foz" -> "baz"), SubRecord(2),
             Array(ArrayElement("foz", 3, Array(5.0, 6.0)), 
                   ArrayElement("baz", 4, Array(7.0, 8.0))))
    )).toDF
    
    df.registerTempTable("df")
    df.printSchema
    
    // root
    // |-- an_array: array (nullable = true)
    // |    |-- element: integer (containsNull = false)
    // |-- a_map: map (nullable = true)
    // |    |-- key: string
    // |    |-- value: string (valueContainsNull = true)
    // |-- a_struct: struct (nullable = true)
    // |    |-- x: integer (nullable = false)
    // |-- an_array_of_structs: array (nullable = true)
    // |    |-- element: struct (containsNull = true)
    // |    |    |-- foo: string (nullable = true)
    // |    |    |-- bar: integer (nullable = false)
    // |    |    |-- vals: array (nullable = true)
    // |    |    |    |-- element: double (containsNull = false)
    
    • array (ArrayType) columns:

      • Column.getItem method

        df.select($"an_array".getItem(1)).show
        
        // +-----------+
        // |an_array[1]|
        // +-----------+
        // |          2|
        // |          5|
        // +-----------+
        
      • Hive brackets syntax:

        sqlContext.sql("SELECT an_array[1] FROM df").show
        
        // +---+
        // |_c0|
        // +---+
        // |  2|
        // |  5|
        // +---+
        
      • an UDF

        val get_ith = udf((xs: Seq[Int], i: Int) => Try(xs(i)).toOption)
        
        df.select(get_ith($"an_array", lit(1))).show
        
        // +---------------+
        // |UDF(an_array,1)|
        // +---------------+
        // |              2|
        // |              5|
        // +---------------+
        
      • Additionally to the methods listed above Spark supports a growing list of built-in functions operating on complex types. Notable examples include higher order functions like transform (SQL 2.4+, Scala 3.0+, PySpark / SparkR 3.1+):

        df.selectExpr("transform(an_array, x -> x + 1) an_array_inc").show
        // +------------+
        // |an_array_inc|
        // +------------+
        // |   [2, 3, 4]|
        // |   [5, 6, 7]|
        // +------------+
        
        import org.apache.spark.sql.functions.transform
        
        df.select(transform($"an_array", x => x + 1) as "an_array_inc").show
        // +------------+
        // |an_array_inc|
        // +------------+
        // |   [2, 3, 4]|
        // |   [5, 6, 7]|
        // +------------+
        
      • filter (SQL 2.4+, Scala 3.0+, Python / SparkR 3.1+)

        df.selectExpr("filter(an_array, x -> x % 2 == 0) an_array_even").show
        // +-------------+
        // |an_array_even|
        // +-------------+
        // |          [2]|
        // |       [4, 6]|
        // +-------------+
        
        import org.apache.spark.sql.functions.filter
        
        df.select(filter($"an_array", x => x % 2 === 0) as "an_array_even").show
        // +-------------+
        // |an_array_even|
        // +-------------+
        // |          [2]|
        // |       [4, 6]|
        // +-------------+
        
      • aggregate (SQL 2.4+, Scala 3.0+, PySpark / SparkR 3.1+):

        df.selectExpr("aggregate(an_array, 0, (acc, x) -> acc + x, acc -> acc) an_array_sum").show
        // +------------+
        // |an_array_sum|
        // +------------+
        // |           6|
        // |          15|
        // +------------+
        
        import org.apache.spark.sql.functions.aggregate
        
        df.select(aggregate($"an_array", lit(0), (x, y) => x + y) as "an_array_sum").show
        // +------------+                                                                  
        // |an_array_sum|
        // +------------+
        // |           6|
        // |          15|
        // +------------+
        
      • array processing functions (array_*) like array_distinct (2.4+):

        import org.apache.spark.sql.functions.array_distinct
        
        df.select(array_distinct($"an_array_of_structs.vals"(0))).show
        // +-------------------------------------------+
        // |array_distinct(an_array_of_structs.vals[0])|
        // +-------------------------------------------+
        // |                                 [1.0, 2.0]|
        // |                                 [5.0, 6.0]|
        // +-------------------------------------------+
        
      • array_max (array_min, 2.4+):

        import org.apache.spark.sql.functions.array_max
        
        df.select(array_max($"an_array")).show
        // +-------------------+
        // |array_max(an_array)|
        // +-------------------+
        // |                  3|
        // |                  6|
        // +-------------------+
        
      • flatten (2.4+)

        import org.apache.spark.sql.functions.flatten
        
        df.select(flatten($"an_array_of_structs.vals")).show
        // +---------------------------------+
        // |flatten(an_array_of_structs.vals)|
        // +---------------------------------+
        // |             [1.0, 2.0, 2.0, 3...|
        // |             [5.0, 6.0, 7.0, 8.0]|
        // +---------------------------------+
        
      • arrays_zip (2.4+):

        import org.apache.spark.sql.functions.arrays_zip
        
        df.select(arrays_zip($"an_array_of_structs.vals"(0), $"an_array_of_structs.vals"(1))).show(false)
        // +--------------------------------------------------------------------+
        // |arrays_zip(an_array_of_structs.vals[0], an_array_of_structs.vals[1])|
        // +--------------------------------------------------------------------+
        // |[[1.0, 3.0], [2.0, 4.0], [2.0, 5.0]]                                |
        // |[[5.0, 7.0], [6.0, 8.0]]                                            |
        // +--------------------------------------------------------------------+
        
      • array_union (2.4+):

        import org.apache.spark.sql.functions.array_union
        
        df.select(array_union($"an_array_of_structs.vals"(0), $"an_array_of_structs.vals"(1))).show
        // +---------------------------------------------------------------------+
        // |array_union(an_array_of_structs.vals[0], an_array_of_structs.vals[1])|
        // +---------------------------------------------------------------------+
        // |                                                 [1.0, 2.0, 3.0, 4...|
        // |                                                 [5.0, 6.0, 7.0, 8.0]|
        // +---------------------------------------------------------------------+
        
      • slice (2.4+):

        import org.apache.spark.sql.functions.slice
        
        df.select(slice($"an_array", 2, 2)).show
        // +---------------------+
        // |slice(an_array, 2, 2)|
        // +---------------------+
        // |               [2, 3]|
        // |               [5, 6]|
        // +---------------------+
        
    • map (MapType) columns

      • using Column.getField method:

        df.select($"a_map".getField("foo")).show
        
        // +----------+
        // |a_map[foo]|
        // +----------+
        // |       bar|
        // |      null|
        // +----------+
        
      • using Hive brackets syntax:

        sqlContext.sql("SELECT a_map['foz'] FROM df").show
        
        // +----+
        // | _c0|
        // +----+
        // |null|
        // | baz|
        // +----+
        
      • using a full path with dot syntax:

        df.select($"a_map.foo").show
        
        // +----+
        // | foo|
        // +----+
        // | bar|
        // |null|
        // +----+
        
      • using an UDF

        val get_field = udf((kvs: Map[String, String], k: String) => kvs.get(k))
        
        df.select(get_field($"a_map", lit("foo"))).show
        
        // +--------------+
        // |UDF(a_map,foo)|
        // +--------------+
        // |           bar|
        // |          null|
        // +--------------+
        
      • Growing number of map_* functions like map_keys (2.3+)

        import org.apache.spark.sql.functions.map_keys
        
        df.select(map_keys($"a_map")).show
        // +---------------+
        // |map_keys(a_map)|
        // +---------------+
        // |          [foo]|
        // |          [foz]|
        // +---------------+
        
      • or map_values (2.3+)

        import org.apache.spark.sql.functions.map_values
        
        df.select(map_values($"a_map")).show
        // +-----------------+
        // |map_values(a_map)|
        // +-----------------+
        // |            [bar]|
        // |            [baz]|
        // +-----------------+
        

      Please check SPARK-23899 for a detailed list.

    • struct (StructType) columns using full path with dot syntax:

      • with DataFrame API

        df.select($"a_struct.x").show
        
        // +---+
        // |  x|
        // +---+
        // |  1|
        // |  2|
        // +---+
        
      • with raw SQL

        sqlContext.sql("SELECT a_struct.x FROM df").show
        
        // +---+
        // |  x|
        // +---+
        // |  1|
        // |  2|
        // +---+
        
    • fields inside array of structs can be accessed using dot-syntax, names and standard Column methods:

      df.select($"an_array_of_structs.foo").show
      
      // +----------+
      // |       foo|
      // +----------+
      // |[foo, bar]|
      // |[foz, baz]|
      // +----------+
      
      sqlContext.sql("SELECT an_array_of_structs[0].foo FROM df").show
      
      // +---+
      // |_c0|
      // +---+
      // |foo|
      // |foz|
      // +---+
      
      df.select($"an_array_of_structs.vals".getItem(1).getItem(1)).show
      
      // +------------------------------+
      // |an_array_of_structs.vals[1][1]|
      // +------------------------------+
      // |                           4.0|
      // |                           8.0|
      // +------------------------------+
      
    • user defined types (UDTs) fields can be accessed using UDFs. See Spark SQL referencing attributes of UDT for details.

    Notes:

    • depending on a Spark version some of these methods can be available only with HiveContext. UDFs should work independent of version with both standard SQLContext and HiveContext.
    • generally speaking nested values are a second class citizens. Not all typical operations are supported on nested fields. Depending on a context it could be better to flatten the schema and / or explode collections

      df.select(explode($"an_array_of_structs")).show
      
      // +--------------------+
      // |                 col|
      // +--------------------+
      // |[foo,1,WrappedArr...|
      // |[bar,2,WrappedArr...|
      // |[foz,3,WrappedArr...|
      // |[baz,4,WrappedArr...|
      // +--------------------+
      
    • Dot syntax can be combined with wildcard character (*) to select (possibly multiple) fields without specifying names explicitly:

      df.select($"a_struct.*").show
      // +---+
      // |  x|
      // +---+
      // |  1|
      // |  2|
      // +---+
      
    • JSON columns can be queried using get_json_object and from_json functions. See How to query JSON data column using Spark DataFrames? for details.

    0 讨论(0)
  • 2020-11-22 02:01

    here was what I did and it worked

    case class Test(name: String, m: Map[String, String])
    val map = Map("hello" -> "world", "hey" -> "there")
    val map2 = Map("hello" -> "people", "hey" -> "you")
    val rdd = sc.parallelize(Array(Test("first", map), Test("second", map2)))
    val rffffdf = rdd.toDF
    rffffdf.registerTempTable("mytable")
    sqlContext.sql("select m.hello from mytable").show
    

    Results

    +------+
    | hello|
    +------+
    | world|
    |people|
    +------+
    
    0 讨论(0)
  • 2020-11-22 02:02

    Once You convert it to DF, u can simply fetch data as

      val rddRow= rdd.map(kv=>{
        val k = kv._1
        val v = kv._2
        Row(k, v)
      })
    
    val myFld1 =  StructField("name", org.apache.spark.sql.types.StringType, true)
    val myFld2 =  StructField("map", org.apache.spark.sql.types.MapType(StringType, StringType), true)
    val arr = Array( myFld1, myFld2)
    val schema = StructType( arr )
    val rowrddDF = sqc.createDataFrame(rddRow, schema)
    rowrddDF.registerTempTable("rowtbl")  
    val rowrddDFFinal = rowrddDF.select(rowrddDF("map.one"))
    or
    val rowrddDFFinal = rowrddDF.select("map.one")
    
    0 讨论(0)
提交回复
热议问题