I have a dataframe that has two rows:
| code | name | v1 | v2 | v3 | v4 |
|------|-------|----|----|----|----|
| 345 | Yemen | NA | 2 | 3 | NA |
| 346 |
You can use aggregate. Assuming that you want to merge rows with identical values in column name
:
aggregate(x=DF[c("v1","v2","v3","v4")], by=list(name=DF$name), min, na.rm = TRUE)
name v1 v2 v3 v4
1 Yemen 4 2 3 5
This is like the SQL SELECT name, min(v1) GROUP BY name
. The min
function is arbitrary, you could also use max
or mean
, all of them return the non-NA value from an NA and a non-NA value if na.rm = TRUE
.
(An SQL-like coalesce()
function would sound better if existed in R.)
However, you should check first if all non-NA values for a given name
is identical. For example, run the aggregate
both with min
and max
and compare, or run it with range
.
Finally, if you have many more variables than just v1-4, you could use DF[,!(names(DF) %in% c("code","name"))]
to define the columns.
Adding dplyr
& data.table
solutions for completeness
Using dplyr::coalesce()
library(dplyr)
sum_NA <- function(x) {if (all(is.na(x))) x[NA_integer_] else sum(x, na.rm = TRUE)}
df %>%
group_by(name) %>%
summarise_all(sum_NA)
#> # A tibble: 1 x 6
#> name code v1 v2 v3 v4
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Yemen 691 4 2 3 5
# Ref: https://stackoverflow.com/a/45515491
# Supply lists by splicing them into dots:
coalesce_by_column <- function(df) {
return(dplyr::coalesce(!!! as.list(df)))
}
df %>%
group_by(name) %>%
summarise_all(coalesce_by_column)
#> # A tibble: 1 x 6
#> name code v1 v2 v3 v4
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Yemen 345 4 2 3 5
Using data.table
# Ref: https://stackoverflow.com/q/28036294/
library(data.table)
setDT(df)[, lapply(.SD, na.omit), by = name]
#> name code v1 v2 v3 v4
#> 1: Yemen 345 4 2 3 5
#> 2: Yemen 346 4 2 3 5
setDT(df)[, code := NULL][, lapply(.SD, na.omit), by = name]
#> name v1 v2 v3 v4
#> 1: Yemen 4 2 3 5
setDT(df)[, code := NULL][, lapply(.SD, sum_NA), by = name]
#> name v1 v2 v3 v4
#> 1: Yemen 4 2 3 5