I have a Pandas Dataframe as below:
itm Date Amount
67 420 2012-09-30 00:00:00 65211
68 421 2012-09-09 00:00:00 29424
69
It is not guaranteed that the slicing returns a view or a copy. You can do
df['column'] = df['column'].fillna(value)
Considering the particular column Amount
in the above table is of integer type. The following would be a solution :
df['Amount'] = df.Amount.fillna(0).astype(int)
Similarly, you can fill it with various data types like float
, str
and so on.
In particular, I would consider datatype to compare various values of the same column.
I believe DataFrame.fillna()
will do this for you.
Link to Docs for a dataframe and for a Series.
Example:
In [7]: df
Out[7]:
0 1
0 NaN NaN
1 -0.494375 0.570994
2 NaN NaN
3 1.876360 -0.229738
4 NaN NaN
In [8]: df.fillna(0)
Out[8]:
0 1
0 0.000000 0.000000
1 -0.494375 0.570994
2 0.000000 0.000000
3 1.876360 -0.229738
4 0.000000 0.000000
To fill the NaNs in only one column, select just that column. in this case I'm using inplace=True to actually change the contents of df.
In [12]: df[1].fillna(0, inplace=True)
Out[12]:
0 0.000000
1 0.570994
2 0.000000
3 -0.229738
4 0.000000
Name: 1
In [13]: df
Out[13]:
0 1
0 NaN 0.000000
1 -0.494375 0.570994
2 NaN 0.000000
3 1.876360 -0.229738
4 NaN 0.000000
EDIT:
To avoid a SettingWithCopyWarning
, use the built in column-specific functionality:
df.fillna({1:0}, inplace=True)
Easy way to fill the missing values:-
filling string columns: when string columns have missing values and NaN values.
df['string column name'].fillna(df['string column name'].mode().values[0], inplace = True)
filling numeric columns: when the numeric columns have missing values and NaN values.
df['numeric column name'].fillna(df['numeric column name'].mean(), inplace = True)
filling NaN with zero:
df['column name'].fillna(0, inplace = True)
You can also use dictionaries to fill NaN values of the specific columns in the DataFrame rather to fill all the DF with some oneValue.
import pandas as pd
df = pd.read_excel('example.xlsx')
df.fillna( {
'column1': 'Write your values here',
'column2': 'Write your values here',
'column3': 'Write your values here',
'column4': 'Write your values here',
.
.
.
'column-n': 'Write your values here'} , inplace=True)
To replace na values in pandas
df['column_name'].fillna(value_to_be_replaced,inplace=True)
if inplace = False
, instead of updating the df (dataframe) it will return the modified values.