How do I plot in real-time in a while loop using matplotlib?

前端 未结 12 1224
天命终不由人
天命终不由人 2020-11-22 01:08

I am trying to plot some data from a camera in real time using OpenCV. However, the real-time plotting (using matplotlib) doesn\'t seem to be working.

I\'ve isolated

相关标签:
12条回答
  • 2020-11-22 01:45

    show is probably not the best choice for this. What I would do is use pyplot.draw() instead. You also might want to include a small time delay (e.g., time.sleep(0.05)) in the loop so that you can see the plots happening. If I make these changes to your example it works for me and I see each point appearing one at a time.

    0 讨论(0)
  • 2020-11-22 01:51

    I know I'm a bit late to answer this question. Nevertheless, I've made some code a while ago to plot live graphs, that I would like to share:

    Code for PyQt4:

    ###################################################################
    #                                                                 #
    #                    PLOT A LIVE GRAPH (PyQt4)                    #
    #                  -----------------------------                  #
    #            EMBED A MATPLOTLIB ANIMATION INSIDE YOUR             #
    #            OWN GUI!                                             #
    #                                                                 #
    ###################################################################
    
    
    import sys
    import os
    from PyQt4 import QtGui
    from PyQt4 import QtCore
    import functools
    import numpy as np
    import random as rd
    import matplotlib
    matplotlib.use("Qt4Agg")
    from matplotlib.figure import Figure
    from matplotlib.animation import TimedAnimation
    from matplotlib.lines import Line2D
    from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
    import time
    import threading
    
    
    def setCustomSize(x, width, height):
        sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed)
        sizePolicy.setHorizontalStretch(0)
        sizePolicy.setVerticalStretch(0)
        sizePolicy.setHeightForWidth(x.sizePolicy().hasHeightForWidth())
        x.setSizePolicy(sizePolicy)
        x.setMinimumSize(QtCore.QSize(width, height))
        x.setMaximumSize(QtCore.QSize(width, height))
    
    ''''''
    
    class CustomMainWindow(QtGui.QMainWindow):
    
        def __init__(self):
    
            super(CustomMainWindow, self).__init__()
    
            # Define the geometry of the main window
            self.setGeometry(300, 300, 800, 400)
            self.setWindowTitle("my first window")
    
            # Create FRAME_A
            self.FRAME_A = QtGui.QFrame(self)
            self.FRAME_A.setStyleSheet("QWidget { background-color: %s }" % QtGui.QColor(210,210,235,255).name())
            self.LAYOUT_A = QtGui.QGridLayout()
            self.FRAME_A.setLayout(self.LAYOUT_A)
            self.setCentralWidget(self.FRAME_A)
    
            # Place the zoom button
            self.zoomBtn = QtGui.QPushButton(text = 'zoom')
            setCustomSize(self.zoomBtn, 100, 50)
            self.zoomBtn.clicked.connect(self.zoomBtnAction)
            self.LAYOUT_A.addWidget(self.zoomBtn, *(0,0))
    
            # Place the matplotlib figure
            self.myFig = CustomFigCanvas()
            self.LAYOUT_A.addWidget(self.myFig, *(0,1))
    
            # Add the callbackfunc to ..
            myDataLoop = threading.Thread(name = 'myDataLoop', target = dataSendLoop, daemon = True, args = (self.addData_callbackFunc,))
            myDataLoop.start()
    
            self.show()
    
        ''''''
    
    
        def zoomBtnAction(self):
            print("zoom in")
            self.myFig.zoomIn(5)
    
        ''''''
    
        def addData_callbackFunc(self, value):
            # print("Add data: " + str(value))
            self.myFig.addData(value)
    
    
    
    ''' End Class '''
    
    
    class CustomFigCanvas(FigureCanvas, TimedAnimation):
    
        def __init__(self):
    
            self.addedData = []
            print(matplotlib.__version__)
    
            # The data
            self.xlim = 200
            self.n = np.linspace(0, self.xlim - 1, self.xlim)
            a = []
            b = []
            a.append(2.0)
            a.append(4.0)
            a.append(2.0)
            b.append(4.0)
            b.append(3.0)
            b.append(4.0)
            self.y = (self.n * 0.0) + 50
    
            # The window
            self.fig = Figure(figsize=(5,5), dpi=100)
            self.ax1 = self.fig.add_subplot(111)
    
    
            # self.ax1 settings
            self.ax1.set_xlabel('time')
            self.ax1.set_ylabel('raw data')
            self.line1 = Line2D([], [], color='blue')
            self.line1_tail = Line2D([], [], color='red', linewidth=2)
            self.line1_head = Line2D([], [], color='red', marker='o', markeredgecolor='r')
            self.ax1.add_line(self.line1)
            self.ax1.add_line(self.line1_tail)
            self.ax1.add_line(self.line1_head)
            self.ax1.set_xlim(0, self.xlim - 1)
            self.ax1.set_ylim(0, 100)
    
    
            FigureCanvas.__init__(self, self.fig)
            TimedAnimation.__init__(self, self.fig, interval = 50, blit = True)
    
        def new_frame_seq(self):
            return iter(range(self.n.size))
    
        def _init_draw(self):
            lines = [self.line1, self.line1_tail, self.line1_head]
            for l in lines:
                l.set_data([], [])
    
        def addData(self, value):
            self.addedData.append(value)
    
        def zoomIn(self, value):
            bottom = self.ax1.get_ylim()[0]
            top = self.ax1.get_ylim()[1]
            bottom += value
            top -= value
            self.ax1.set_ylim(bottom,top)
            self.draw()
    
    
        def _step(self, *args):
            # Extends the _step() method for the TimedAnimation class.
            try:
                TimedAnimation._step(self, *args)
            except Exception as e:
                self.abc += 1
                print(str(self.abc))
                TimedAnimation._stop(self)
                pass
    
        def _draw_frame(self, framedata):
            margin = 2
            while(len(self.addedData) > 0):
                self.y = np.roll(self.y, -1)
                self.y[-1] = self.addedData[0]
                del(self.addedData[0])
    
    
            self.line1.set_data(self.n[ 0 : self.n.size - margin ], self.y[ 0 : self.n.size - margin ])
            self.line1_tail.set_data(np.append(self.n[-10:-1 - margin], self.n[-1 - margin]), np.append(self.y[-10:-1 - margin], self.y[-1 - margin]))
            self.line1_head.set_data(self.n[-1 - margin], self.y[-1 - margin])
            self._drawn_artists = [self.line1, self.line1_tail, self.line1_head]
    
    ''' End Class '''
    
    # You need to setup a signal slot mechanism, to 
    # send data to your GUI in a thread-safe way.
    # Believe me, if you don't do this right, things
    # go very very wrong..
    class Communicate(QtCore.QObject):
        data_signal = QtCore.pyqtSignal(float)
    
    ''' End Class '''
    
    
    def dataSendLoop(addData_callbackFunc):
        # Setup the signal-slot mechanism.
        mySrc = Communicate()
        mySrc.data_signal.connect(addData_callbackFunc)
    
        # Simulate some data
        n = np.linspace(0, 499, 500)
        y = 50 + 25*(np.sin(n / 8.3)) + 10*(np.sin(n / 7.5)) - 5*(np.sin(n / 1.5))
        i = 0
    
        while(True):
            if(i > 499):
                i = 0
            time.sleep(0.1)
            mySrc.data_signal.emit(y[i]) # <- Here you emit a signal!
            i += 1
        ###
    ###
    
    
    if __name__== '__main__':
        app = QtGui.QApplication(sys.argv)
        QtGui.QApplication.setStyle(QtGui.QStyleFactory.create('Plastique'))
        myGUI = CustomMainWindow()
        sys.exit(app.exec_())
    
    ''''''
    

     
    I recently rewrote the code for PyQt5.
    Code for PyQt5:

    ###################################################################
    #                                                                 #
    #                    PLOT A LIVE GRAPH (PyQt5)                    #
    #                  -----------------------------                  #
    #            EMBED A MATPLOTLIB ANIMATION INSIDE YOUR             #
    #            OWN GUI!                                             #
    #                                                                 #
    ###################################################################
    
    import sys
    import os
    from PyQt5.QtWidgets import *
    from PyQt5.QtCore import *
    from PyQt5.QtGui import *
    import functools
    import numpy as np
    import random as rd
    import matplotlib
    matplotlib.use("Qt5Agg")
    from matplotlib.figure import Figure
    from matplotlib.animation import TimedAnimation
    from matplotlib.lines import Line2D
    from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
    import time
    import threading
    
    class CustomMainWindow(QMainWindow):
        def __init__(self):
            super(CustomMainWindow, self).__init__()
            # Define the geometry of the main window
            self.setGeometry(300, 300, 800, 400)
            self.setWindowTitle("my first window")
            # Create FRAME_A
            self.FRAME_A = QFrame(self)
            self.FRAME_A.setStyleSheet("QWidget { background-color: %s }" % QColor(210,210,235,255).name())
            self.LAYOUT_A = QGridLayout()
            self.FRAME_A.setLayout(self.LAYOUT_A)
            self.setCentralWidget(self.FRAME_A)
            # Place the zoom button
            self.zoomBtn = QPushButton(text = 'zoom')
            self.zoomBtn.setFixedSize(100, 50)
            self.zoomBtn.clicked.connect(self.zoomBtnAction)
            self.LAYOUT_A.addWidget(self.zoomBtn, *(0,0))
            # Place the matplotlib figure
            self.myFig = CustomFigCanvas()
            self.LAYOUT_A.addWidget(self.myFig, *(0,1))
            # Add the callbackfunc to ..
            myDataLoop = threading.Thread(name = 'myDataLoop', target = dataSendLoop, daemon = True, args = (self.addData_callbackFunc,))
            myDataLoop.start()
            self.show()
            return
    
        def zoomBtnAction(self):
            print("zoom in")
            self.myFig.zoomIn(5)
            return
    
        def addData_callbackFunc(self, value):
            # print("Add data: " + str(value))
            self.myFig.addData(value)
            return
    
    ''' End Class '''
    
    
    class CustomFigCanvas(FigureCanvas, TimedAnimation):
        def __init__(self):
            self.addedData = []
            print(matplotlib.__version__)
            # The data
            self.xlim = 200
            self.n = np.linspace(0, self.xlim - 1, self.xlim)
            a = []
            b = []
            a.append(2.0)
            a.append(4.0)
            a.append(2.0)
            b.append(4.0)
            b.append(3.0)
            b.append(4.0)
            self.y = (self.n * 0.0) + 50
            # The window
            self.fig = Figure(figsize=(5,5), dpi=100)
            self.ax1 = self.fig.add_subplot(111)
            # self.ax1 settings
            self.ax1.set_xlabel('time')
            self.ax1.set_ylabel('raw data')
            self.line1 = Line2D([], [], color='blue')
            self.line1_tail = Line2D([], [], color='red', linewidth=2)
            self.line1_head = Line2D([], [], color='red', marker='o', markeredgecolor='r')
            self.ax1.add_line(self.line1)
            self.ax1.add_line(self.line1_tail)
            self.ax1.add_line(self.line1_head)
            self.ax1.set_xlim(0, self.xlim - 1)
            self.ax1.set_ylim(0, 100)
            FigureCanvas.__init__(self, self.fig)
            TimedAnimation.__init__(self, self.fig, interval = 50, blit = True)
            return
    
        def new_frame_seq(self):
            return iter(range(self.n.size))
    
        def _init_draw(self):
            lines = [self.line1, self.line1_tail, self.line1_head]
            for l in lines:
                l.set_data([], [])
            return
    
        def addData(self, value):
            self.addedData.append(value)
            return
    
        def zoomIn(self, value):
            bottom = self.ax1.get_ylim()[0]
            top = self.ax1.get_ylim()[1]
            bottom += value
            top -= value
            self.ax1.set_ylim(bottom,top)
            self.draw()
            return
    
        def _step(self, *args):
            # Extends the _step() method for the TimedAnimation class.
            try:
                TimedAnimation._step(self, *args)
            except Exception as e:
                self.abc += 1
                print(str(self.abc))
                TimedAnimation._stop(self)
                pass
            return
    
        def _draw_frame(self, framedata):
            margin = 2
            while(len(self.addedData) > 0):
                self.y = np.roll(self.y, -1)
                self.y[-1] = self.addedData[0]
                del(self.addedData[0])
    
            self.line1.set_data(self.n[ 0 : self.n.size - margin ], self.y[ 0 : self.n.size - margin ])
            self.line1_tail.set_data(np.append(self.n[-10:-1 - margin], self.n[-1 - margin]), np.append(self.y[-10:-1 - margin], self.y[-1 - margin]))
            self.line1_head.set_data(self.n[-1 - margin], self.y[-1 - margin])
            self._drawn_artists = [self.line1, self.line1_tail, self.line1_head]
            return
    
    ''' End Class '''
    
    
    # You need to setup a signal slot mechanism, to
    # send data to your GUI in a thread-safe way.
    # Believe me, if you don't do this right, things
    # go very very wrong..
    class Communicate(QObject):
        data_signal = pyqtSignal(float)
    
    ''' End Class '''
    
    
    
    def dataSendLoop(addData_callbackFunc):
        # Setup the signal-slot mechanism.
        mySrc = Communicate()
        mySrc.data_signal.connect(addData_callbackFunc)
    
        # Simulate some data
        n = np.linspace(0, 499, 500)
        y = 50 + 25*(np.sin(n / 8.3)) + 10*(np.sin(n / 7.5)) - 5*(np.sin(n / 1.5))
        i = 0
    
        while(True):
            if(i > 499):
                i = 0
            time.sleep(0.1)
            mySrc.data_signal.emit(y[i]) # <- Here you emit a signal!
            i += 1
        ###
    ###
    
    if __name__== '__main__':
        app = QApplication(sys.argv)
        QApplication.setStyle(QStyleFactory.create('Plastique'))
        myGUI = CustomMainWindow()
        sys.exit(app.exec_())
    

    Just try it out. Copy-paste this code in a new python-file, and run it. You should get a beautiful, smoothly moving graph:

    0 讨论(0)
  • 2020-11-22 01:52

    The top (and many other) answers were built upon plt.pause(), but that was an old way of animating the plot in matplotlib. It is not only slow, but also causes focus to be grabbed upon each update (I had a hard time stopping the plotting python process).

    TL;DR: you may want to use matplotlib.animation (as mentioned in documentation).

    After digging around various answers and pieces of code, this in fact proved to be a smooth way of drawing incoming data infinitely for me.

    Here is my code for a quick start. It plots current time with a random number in [0, 100) every 200ms infinitely, while also handling auto rescaling of the view:

    from datetime import datetime
    from matplotlib import pyplot
    from matplotlib.animation import FuncAnimation
    from random import randrange
    
    x_data, y_data = [], []
    
    figure = pyplot.figure()
    line, = pyplot.plot_date(x_data, y_data, '-')
    
    def update(frame):
        x_data.append(datetime.now())
        y_data.append(randrange(0, 100))
        line.set_data(x_data, y_data)
        figure.gca().relim()
        figure.gca().autoscale_view()
        return line,
    
    animation = FuncAnimation(figure, update, interval=200)
    
    pyplot.show()
    

    You can also explore blit for even better performance as in FuncAnimation documentation.

    An example from the blit documentation:

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.animation import FuncAnimation
    
    fig, ax = plt.subplots()
    xdata, ydata = [], []
    ln, = plt.plot([], [], 'ro')
    
    def init():
        ax.set_xlim(0, 2*np.pi)
        ax.set_ylim(-1, 1)
        return ln,
    
    def update(frame):
        xdata.append(frame)
        ydata.append(np.sin(frame))
        ln.set_data(xdata, ydata)
        return ln,
    
    ani = FuncAnimation(fig, update, frames=np.linspace(0, 2*np.pi, 128),
                        init_func=init, blit=True)
    plt.show()
    
    0 讨论(0)
  • 2020-11-22 01:52

    I know this question is old, but there's now a package available called drawnow on GitHub as "python-drawnow". This provides an interface similar to MATLAB's drawnow -- you can easily update a figure.

    An example for your use case:

    import matplotlib.pyplot as plt
    from drawnow import drawnow
    
    def make_fig():
        plt.scatter(x, y)  # I think you meant this
    
    plt.ion()  # enable interactivity
    fig = plt.figure()  # make a figure
    
    x = list()
    y = list()
    
    for i in range(1000):
        temp_y = np.random.random()
        x.append(i)
        y.append(temp_y)  # or any arbitrary update to your figure's data
        i += 1
        drawnow(make_fig)
    

    python-drawnow is a thin wrapper around plt.draw but provides the ability to confirm (or debug) after figure display.

    0 讨论(0)
  • 2020-11-22 01:56

    None of the methods worked for me. But I have found this Real time matplotlib plot is not working while still in a loop

    All you need is to add

    plt.pause(0.0001)
    

    and then you could see the new plots.

    So your code should look like this, and it will work

    import matplotlib.pyplot as plt
    import numpy as np
    plt.ion() ## Note this correction
    fig=plt.figure()
    plt.axis([0,1000,0,1])
    
    i=0
    x=list()
    y=list()
    
    while i <1000:
        temp_y=np.random.random();
        x.append(i);
        y.append(temp_y);
        plt.scatter(i,temp_y);
        i+=1;
        plt.show()
        plt.pause(0.0001) #Note this correction
    
    0 讨论(0)
  • 2020-11-22 01:59

    If you're interested in realtime plotting, I'd recommend looking into matplotlib's animation API. In particular, using blit to avoid redrawing the background on every frame can give you substantial speed gains (~10x):

    #!/usr/bin/env python
    
    import numpy as np
    import time
    import matplotlib
    matplotlib.use('GTKAgg')
    from matplotlib import pyplot as plt
    
    
    def randomwalk(dims=(256, 256), n=20, sigma=5, alpha=0.95, seed=1):
        """ A simple random walk with memory """
    
        r, c = dims
        gen = np.random.RandomState(seed)
        pos = gen.rand(2, n) * ((r,), (c,))
        old_delta = gen.randn(2, n) * sigma
    
        while True:
            delta = (1. - alpha) * gen.randn(2, n) * sigma + alpha * old_delta
            pos += delta
            for ii in xrange(n):
                if not (0. <= pos[0, ii] < r):
                    pos[0, ii] = abs(pos[0, ii] % r)
                if not (0. <= pos[1, ii] < c):
                    pos[1, ii] = abs(pos[1, ii] % c)
            old_delta = delta
            yield pos
    
    
    def run(niter=1000, doblit=True):
        """
        Display the simulation using matplotlib, optionally using blit for speed
        """
    
        fig, ax = plt.subplots(1, 1)
        ax.set_aspect('equal')
        ax.set_xlim(0, 255)
        ax.set_ylim(0, 255)
        ax.hold(True)
        rw = randomwalk()
        x, y = rw.next()
    
        plt.show(False)
        plt.draw()
    
        if doblit:
            # cache the background
            background = fig.canvas.copy_from_bbox(ax.bbox)
    
        points = ax.plot(x, y, 'o')[0]
        tic = time.time()
    
        for ii in xrange(niter):
    
            # update the xy data
            x, y = rw.next()
            points.set_data(x, y)
    
            if doblit:
                # restore background
                fig.canvas.restore_region(background)
    
                # redraw just the points
                ax.draw_artist(points)
    
                # fill in the axes rectangle
                fig.canvas.blit(ax.bbox)
    
            else:
                # redraw everything
                fig.canvas.draw()
    
        plt.close(fig)
        print "Blit = %s, average FPS: %.2f" % (
            str(doblit), niter / (time.time() - tic))
    
    if __name__ == '__main__':
        run(doblit=False)
        run(doblit=True)
    

    Output:

    Blit = False, average FPS: 54.37
    Blit = True, average FPS: 438.27
    
    0 讨论(0)
提交回复
热议问题