I\'m using a YAML configuration file. So this is the code to load my config in Python:
import os
import yaml
with open(\'./config.yml\') as file:
config
You could use reduce to extract the value from the config:
In [41]: config = {'asdf': {'asdf': {'qwer': 1}}}
In [42]: from functools import reduce
...:
...: def get_config_value(key, cfg):
...: return reduce(lambda c, k: c[k], key.split('.'), cfg)
...:
In [43]: get_config_value('asdf.asdf.qwer', config)
Out[43]: 1
This solution is easy to maintain and has very few new edge cases, if your YAML uses a very limited subset of the language.
Use a proper YAML parser and tools, such as in this answer.
On a lighter note (not to be taken too seriously), you could create a wrapper that allows using attribute access:
In [47]: class DotConfig:
...:
...: def __init__(self, cfg):
...: self._cfg = cfg
...: def __getattr__(self, k):
...: v = self._cfg[k]
...: if isinstance(v, dict):
...: return DotConfig(v)
...: return v
...:
In [48]: DotConfig(config).asdf.asdf.qwer
Out[48]: 1
Do note that this fails for keywords, such as "as", "pass", "if" and the like.
Finally, you could get really crazy (read: probably not a good idea) and customize dict
to handle dotted string and tuple keys as a special case, with attribute access to items thrown in the mix (with its limitations):
In [58]: class DotDict(dict):
...:
...: # update, __setitem__ etc. omitted, but required if
...: # one tries to set items using dot notation. Essentially
...: # this is a read-only view.
...:
...: def __getattr__(self, k):
...: try:
...: v = self[k]
...: except KeyError:
...: return super().__getattr__(k)
...: if isinstance(v, dict):
...: return DotDict(v)
...: return v
...:
...: def __getitem__(self, k):
...: if isinstance(k, str) and '.' in k:
...: k = k.split('.')
...: if isinstance(k, (list, tuple)):
...: return reduce(lambda d, kk: d[kk], k, self)
...: return super().__getitem__(k)
...:
...: def get(self, k, default=None):
...: if isinstance(k, str) and '.' in k:
...: try:
...: return self[k]
...: except KeyError:
...: return default
...: return super().get(k, default=default)
...:
In [59]: dotconf = DotDict(config)
In [60]: dotconf['asdf.asdf.qwer']
Out[60]: 1
In [61]: dotconf['asdf', 'asdf', 'qwer']
Out[61]: 1
In [62]: dotconf.asdf.asdf.qwer
Out[62]: 1
In [63]: dotconf.get('asdf.asdf.qwer')
Out[63]: 1
In [64]: dotconf.get('asdf.asdf.asdf')
In [65]: dotconf.get('asdf.asdf.asdf', 'Nope')
Out[65]: 'Nope'
I generally follow a best practice of converting config (any kind, not just yaml) to an in memory object.
This way the text based config is unwrapped by 1 function and the text is thrown away, giving a beautiful object to work with as against having every function to deal with the internals of the config. That way all functions only know of that one internal object interface. If any new parameter is added/renamed/deleted from the config file, the only function to change is the loader function which loads the config into the in memory object.
Below is an example i did for loading FloydHub config yaml file into an in-memory object. I feel it is a very good design pattern.
First define a config representative class like below:
class FloydYamlConfig(object):
class Input:
def __init__(self, destination, source):
self.destination = destination
self.source = source
def __init__(self, floyd_yaml_dict):
self.machine = floyd_yaml_dict['machine']
self.env = floyd_yaml_dict['env']
self.description = floyd_yaml_dict['description']
self.max_runtime = floyd_yaml_dict['max_runtime']
self.command = floyd_yaml_dict['command']
self.input = []
for input_conf in floyd_yaml_dict['input']:
input_obj = self.Input(destination=input_conf['destination'], source=input_conf['source'])
self.input.append(input_obj)
def __str__(self):
input_str = ''
for input_obj in self.input:
input_str += '\ndestination: {}\n source: {}'.format(input_obj.destination, input_obj.source)
print_str = ('machine: {}\n'
'env: {}\n'
'input: {}\n'
'description: {}\n'
'max_runtime: {}\n'
'command: {}\n').format(
self.machine, self.env, input_str, self.description, self.max_runtime, self.command)
return print_str
Then load the yaml into the object for further use:
floyd_conf = read_floyd_yaml_config(args.floyd_yaml_path)
def read_floyd_yaml_config(floyd_yaml_path) -> FloydYamlConfig:
with open(floyd_yaml_path) as f:
yaml_conf_dict = yaml.safe_load(f)
floyd_conf = FloydYamlConfig(yaml_conf_dict)
# print(floyd_conf)
return floyd_conf
Sample yaml
# see: https://docs.floydhub.com/floyd_config
machine: gpu2
env: tensorflow-1.0
input:
- destination: data
source: abc/datasets/my-data/6
- destination: config
source: abc/datasets/my-config/1
description: this is a test
max_runtime: 3600
command: >-
echo 'hello world'
On the one hand your example takes the right approach by using get_config_value('mysql.user.pass', config)
instead of solving the dotted access with attributes. I am not sure
if you realised that on purpose you were not trying to do the more intuitive:
print(config.mysql.user.pass)
which you can't get to work, even when overloading __getattr__
, as pass
is a Python language element.
However your example describes only a very restricted subset of YAML files as it doesn't involve any sequence collections, nor any complex keys.
If you want to cover more than the tiny subset you can e.g. extend the powerful round-trip capable objects of ruamel.yaml
:¹
import ruamel.yaml
def mapping_string_access(self, s, delimiter=None, key_delim=None):
def p(v):
try:
v = int(v)
except:
pass
return v
# possible extend for primitives like float, datetime, booleans, etc.
if delimiter is None:
delimiter = '.'
if key_delim is None:
key_delim = ','
try:
key, rest = s.split(delimiter, 1)
except ValueError:
key, rest = s, None
if key_delim in key:
key = tuple((p(key) for key in key.split(key_delim)))
else:
key = p(key)
if rest is None:
return self[key]
return self[key].string_access(rest, delimiter, key_delim)
ruamel.yaml.comments.CommentedMap.string_access = mapping_string_access
def sequence_string_access(self, s, delimiter=None, key_delim=None):
if delimiter is None:
delimiter = '.'
try:
key, rest = s.split(delimiter, 1)
except ValueError:
key, rest = s, None
key = int(key)
if rest is None:
return self[key]
return self[key].string_access(rest, delimiter, key_delim)
ruamel.yaml.comments.CommentedSeq.string_access = sequence_string_access
Once that is set up you are can run the following:
yaml_str = """\
mysql:
user:
pass: secret
list: [a: 1, b: 2, c: 3]
[2016, 9, 14]: some date
42: some answer
"""
yaml = ruamel.yaml.YAML()
config = yaml.load(yaml_str)
def get_config_value(path, data, **kw):
return data.string_access(path, **kw)
print(get_config_value('mysql.user.pass', config))
print(get_config_value('mysql:user:pass', config, delimiter=":"))
print(get_config_value('mysql.list.1.b', config))
print(get_config_value('mysql.2016,9,14', config))
print(config.string_access('mysql.42'))
giving:
secret
secret
2
some date
some answer
showing that with a bit more forethought and very little extra work you can have flexible dotted access to many to a vast range of YAML files, and not just those consisting of recursive mappings with string scalars as keys.
config.string_access(
mysql.user.pass)
instead of defining and using get_config_value()
¹ This was done using ruamel.yaml a YAML 1.2 parser, of which I am the author.
I ended up using python-box.
This package provides multiple ways to read config files (yaml, csv, json, ...).
And not only that, it allows you to pass dict
or strings directly:
from box import Box
import yaml # Only required for different loaders
# Pass dict directly
movie_box = Box({ "Robin Hood: Men in Tights": { "imdb stars": 6.7, "length": 104 } })
# Load from yaml file
# Here it is also possible to use PyYAML arguments,
# for example to specify different loaders e.g. SafeLoader or FullLoader
conf = Box.from_yaml(filename="./config.yaml", Loader=yaml.FullLoader)
conf.mysql.user.pass
A lot more examples, are available in the Wiki.
I had the same problem a while ago and built this getter:
def get(self, key):
"""Tries to find the configuration value for a given key.
:param str key: Key in dot-notation (e.g. 'foo.lol').
:return: The configuration value. None if no value was found.
"""
try:
return self.__lookup(self.config, key)
except KeyError:
return None
def __lookup(self, dct, key):
"""Checks dct recursive to find the value for key.
Is used by get() interanlly.
:param dict dct: The configuration dict.
:param str key: The key we are looking for.
:return: The configuration value.
:raise KeyError: If the given key is not in the configuration dict.
"""
if '.' in key:
key, node = key.split('.', 1)
return self.__lookup(dct[key], node)
else:
return dct[key]
The getter looks-up a config value from self.config
in a recursive manner (by using __lookup
).
If you have trouble adjusting this for your case, feel free to ask for further help.
It's quite old question, but I came here hunting for the answer, but looking for more simpler solution. Finally, came up with my own solution using easydict
library; installed using pip install easydict
def yaml_load(fileName):
import yaml
from easydict import EasyDict as edict
fc = None
with open(fileName, 'r') as f:
fc = edict(yaml.load(f))
## or use safe_load
## fc = edict(yaml.safe_load(f))
return fc
Now, simply call yaml_load
with the valid yaml filename
:
config = yaml_load('./config.yml')
## assuming: config["mysql"]["user"]["pass"] is a valid key in config.yml
print("{}".format(config.mysql.user.pass))