What are the common algorithms being used to measure the processor frequency?
One option is to sense the CPU frequency, by running code with known instructions per loop
This functionality is contained in 7zip, since about v9.20 I think.
> 7z b
7-Zip 9.38 beta Copyright (c) 1999-2014 Igor Pavlov 2015-01-03
CPU Freq: 4266 4000 4266 4000 2723 4129 3261 3644 3362
The final number is meant to be correct (and on my PC and many others, I have found it to be quite correct - the test runs very quick so turbo may not kick in, and servers set in Balanced/Power Save modes most likely give readings of around 1ghz)
The source code is at GitHub (Official source is a download from 7-zip.org)
With the most significant portion being:
#define YY1 sum += val; sum ^= val;
#define YY3 YY1 YY1 YY1 YY1
#define YY5 YY3 YY3 YY3 YY3
#define YY7 YY5 YY5 YY5 YY5
static const UInt32 kNumFreqCommands = 128;
EXTERN_C_BEGIN
static UInt32 CountCpuFreq(UInt32 sum, UInt32 num, UInt32 val)
{
for (UInt32 i = 0; i < num; i++)
{
YY7
}
return sum;
}
EXTERN_C_END
One way on x86 Intel CPU's since Pentium would be to use two samplings of the RDTSC instruction with a delay loop of known wall time, eg:
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
uint64_t rdtsc(void) {
uint64_t result;
__asm__ __volatile__ ("rdtsc" : "=A" (result));
return result;
}
int main(void) {
uint64_t ts0, ts1;
ts0 = rdtsc();
sleep(1);
ts1 = rdtsc();
printf("clock frequency = %llu\n", ts1 - ts0);
return 0;
}
(on 32-bit platforms with GCC)
RDTSC is available in ring 3 if the TSC flag in CR4 is set, which is common but not guaranteed. One shortcoming of this method is that it is vulnerable to frequency scaling changes affecting the result if they happen inside the delay. To mitigate that you could execute code that keeps the CPU busy and constantly poll the system time to see if your delay period has expired, to keep the CPU in the highest frequency state available.
I use the following (pseudo)algorithm:
basetime=time(); /* time returns seconds */
while (time()==basetime);
stclk=rdtsc(); /* rdtsc is an assembly instruction */
basetime=time();
while (time()==basetime
endclk=rdtsc();
nclks=encdclk-stclk;
At this point you might assume that you've determined the clock frequency but even though it appears correct it can be improved.
All PCs contain a PIT (Programmable Interval Timer) device which contains counters which are (used to be) used for serial ports and the system clock. It was fed with a frequency of 1193182 Hz. The system clock counter was set to the highest countdown value (65536) resulting in a system clock tick frequency of 1193182/65536 => 18.2065 Hz or once every 54.925 milliseconds.
The number of ticks necessary for the clock to increment to the next second will therefore depend. Usually 18 ticks are required and sometimes 19. This can be handled by performing the algorithm (above) twice and storing the results. The two results will either be equivalent to two 18 tick sequences or one 18 and one 19. Two 19s in a row won't occur. So by taking the smaller of the two results you will have an 18 tick second. Adjust this result by multiplying with 18.2065 and dividing by 18.0 or, using integer arithmetic, multiply by 182065, add 90000 and divide by 180000. 90000 is one half of 180000 and is there for rounding. If you choose the calculation with integer route make sure you are using 64-bit multiplication and division.
You will now have a CPU clock speed x in Hz which can be converted to kHz ((x+500)/1000) or MHz ((x+5000000)/1000000). The 500 and 500000 are one half of 1000 and 1000000 respectively and are there for rounding. To calculate MHz do not go via the kHz value because rounding issues may arise. Use the Hz value and the second algorithm.
That was the intention of things like BogoMIPS, but CPUs are a lot more complicated nowadays. Superscalar CPUs can issue multiple instructions per clock, making any measurement based on counting clock cycles to execute a block of instructions highly inaccurate.
CPU frequencies are also variable based on offered load and/or temperature. The fact that the CPU is currently running at 800 MHz does not mean it will always be running at 800 MHz, it might throttle up or down as needed.
If you really need to know the clock frequency, it should be passed in as a parameter. An EEPROM on the board would supply the base frequency, and if the clock can vary you'd need to be able to read the CPUs power state registers (or make an OS call) to find out the frequency at that instant.
With all that said, there may be other ways to accomplish what you're trying to do. For example if you want to make high-precision measurements of how long a particular codepath takes, the CPU likely has performance counters running at a fixed frequency which are a better measure of wall-clock time than reading a tick count register.