Suppose you have a dictionary like:
{\'a\': 1,
\'c\': {\'a\': 2,
\'b\': {\'x\': 5,
\'y\' : 10}},
\'d\': [1, 2, 3]}
Ho
I tried some of the solutions on this page - though not all - but those I tried failed to handle the nested list of dict.
Consider a dict like this:
d = {
'owner': {
'name': {'first_name': 'Steven', 'last_name': 'Smith'},
'lottery_nums': [1, 2, 3, 'four', '11', None],
'address': {},
'tuple': (1, 2, 'three'),
'tuple_with_dict': (1, 2, 'three', {'is_valid': False}),
'set': {1, 2, 3, 4, 'five'},
'children': [
{'name': {'first_name': 'Jessica',
'last_name': 'Smith', },
'children': []
},
{'name': {'first_name': 'George',
'last_name': 'Smith'},
'children': []
}
]
}
}
Here's my makeshift solution:
def flatten_dict(input_node: dict, key_: str = '', output_dict: dict = {}):
if isinstance(input_node, dict):
for key, val in input_node.items():
new_key = f"{key_}.{key}" if key_ else f"{key}"
flatten_dict(val, new_key, output_dict)
elif isinstance(input_node, list):
for idx, item in enumerate(input_node):
flatten_dict(item, f"{key_}.{idx}", output_dict)
else:
output_dict[key_] = input_node
return output_dict
which produces:
{
owner.name.first_name: Steven,
owner.name.last_name: Smith,
owner.lottery_nums.0: 1,
owner.lottery_nums.1: 2,
owner.lottery_nums.2: 3,
owner.lottery_nums.3: four,
owner.lottery_nums.4: 11,
owner.lottery_nums.5: None,
owner.tuple: (1, 2, 'three'),
owner.tuple_with_dict: (1, 2, 'three', {'is_valid': False}),
owner.set: {1, 2, 3, 4, 'five'},
owner.children.0.name.first_name: Jessica,
owner.children.0.name.last_name: Smith,
owner.children.1.name.first_name: George,
owner.children.1.name.last_name: Smith,
}
A makeshift solution and it's not perfect.
NOTE:
it doesn't keep empty dicts such as the address: {}
k/v pair.
it won't flatten dicts in nested tuples - though it would be easy to add using the fact that python tuples act similar to lists.
Or if you are already using pandas, You can do it with json_normalize()
like so:
import pandas as pd
d = {'a': 1,
'c': {'a': 2, 'b': {'x': 5, 'y' : 10}},
'd': [1, 2, 3]}
df = pd.io.json.json_normalize(d, sep='_')
print(df.to_dict(orient='records')[0])
Output:
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'c_b_y': 10, 'd': [1, 2, 3]}
Not exactly what the OP asked, but lots of folks are coming here looking for ways to flatten real-world nested JSON data which can have nested key-value json objects and arrays and json objects inside the arrays and so on. JSON doesn't include tuples, so we don't have to fret over those.
I found an implementation of the list-inclusion comment by @roneo to the answer posted by @Imran :
https://github.com/ScriptSmith/socialreaper/blob/master/socialreaper/tools.py#L8
import collections
def flatten(dictionary, parent_key=False, separator='.'):
"""
Turn a nested dictionary into a flattened dictionary
:param dictionary: The dictionary to flatten
:param parent_key: The string to prepend to dictionary's keys
:param separator: The string used to separate flattened keys
:return: A flattened dictionary
"""
items = []
for key, value in dictionary.items():
new_key = str(parent_key) + separator + key if parent_key else key
if isinstance(value, collections.MutableMapping):
items.extend(flatten(value, new_key, separator).items())
elif isinstance(value, list):
for k, v in enumerate(value):
items.extend(flatten({str(k): v}, new_key).items())
else:
items.append((new_key, value))
return dict(items)
Test it:
flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3] })
>> {'a': 1, 'c.a': 2, 'c.b.x': 5, 'c.b.y': 10, 'd.0': 1, 'd.1': 2, 'd.2': 3}
Annd that does the job I need done: I throw any complicated json at this and it flattens it out for me.
All credits to https://github.com/ScriptSmith .
I always prefer access dict
objects via .items()
, so for flattening dicts I use the following recursive generator flat_items(d)
. If you like to have dict
again, simply wrap it like this: flat = dict(flat_items(d))
def flat_items(d, key_separator='.'):
"""
Flattens the dictionary containing other dictionaries like here: https://stackoverflow.com/questions/6027558/flatten-nested-python-dictionaries-compressing-keys
>>> example = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
>>> flat = dict(flat_items(example, key_separator='_'))
>>> assert flat['c_b_y'] == 10
"""
for k, v in d.items():
if type(v) is dict:
for k1, v1 in flat_items(v, key_separator=key_separator):
yield key_separator.join((k, k1)), v1
else:
yield k, v