Nesting await in Parallel.ForEach

后端 未结 9 1334
别跟我提以往
别跟我提以往 2020-11-22 01:01

In a metro app, I need to execute a number of WCF calls. There are a significant number of calls to be made, so I need to do them in a parallel loop. The problem is that th

相关标签:
9条回答
  • 2020-11-22 01:28

    An extension method for this which makes use of SemaphoreSlim and also allows to set maximum degree of parallelism

        /// <summary>
        /// Concurrently Executes async actions for each item of <see cref="IEnumerable<typeparamref name="T"/>
        /// </summary>
        /// <typeparam name="T">Type of IEnumerable</typeparam>
        /// <param name="enumerable">instance of <see cref="IEnumerable<typeparamref name="T"/>"/></param>
        /// <param name="action">an async <see cref="Action" /> to execute</param>
        /// <param name="maxDegreeOfParallelism">Optional, An integer that represents the maximum degree of parallelism,
        /// Must be grater than 0</param>
        /// <returns>A Task representing an async operation</returns>
        /// <exception cref="ArgumentOutOfRangeException">If the maxActionsToRunInParallel is less than 1</exception>
        public static async Task ForEachAsyncConcurrent<T>(
            this IEnumerable<T> enumerable,
            Func<T, Task> action,
            int? maxDegreeOfParallelism = null)
        {
            if (maxDegreeOfParallelism.HasValue)
            {
                using (var semaphoreSlim = new SemaphoreSlim(
                    maxDegreeOfParallelism.Value, maxDegreeOfParallelism.Value))
                {
                    var tasksWithThrottler = new List<Task>();
    
                    foreach (var item in enumerable)
                    {
                        // Increment the number of currently running tasks and wait if they are more than limit.
                        await semaphoreSlim.WaitAsync();
    
                        tasksWithThrottler.Add(Task.Run(async () =>
                        {
                            await action(item).ContinueWith(res =>
                            {
                                // action is completed, so decrement the number of currently running tasks
                                semaphoreSlim.Release();
                            });
                        }));
                    }
    
                    // Wait for all tasks to complete.
                    await Task.WhenAll(tasksWithThrottler.ToArray());
                }
            }
            else
            {
                await Task.WhenAll(enumerable.Select(item => action(item)));
            }
        }
    

    Sample Usage:

    await enumerable.ForEachAsyncConcurrent(
        async item =>
        {
            await SomeAsyncMethod(item);
        },
        5);
    
    0 讨论(0)
  • 2020-11-22 01:29

    Wrap the Parallel.Foreach into a Task.Run() and instead of the await keyword use [yourasyncmethod].Result

    (you need to do the Task.Run thing to not block the UI thread)

    Something like this:

    var yourForeachTask = Task.Run(() =>
            {
                Parallel.ForEach(ids, i =>
                {
                    ICustomerRepo repo = new CustomerRepo();
                    var cust = repo.GetCustomer(i).Result;
                    customers.Add(cust);
                });
            });
    await yourForeachTask;
    
    0 讨论(0)
  • 2020-11-22 01:29

    After introducing a bunch of helper methods, you will be able run parallel queries with this simple syntax:

    const int DegreeOfParallelism = 10;
    IEnumerable<double> result = await Enumerable.Range(0, 1000000)
        .Split(DegreeOfParallelism)
        .SelectManyAsync(async i => await CalculateAsync(i).ConfigureAwait(false))
        .ConfigureAwait(false);
    

    What happens here is: we split source collection into 10 chunks (.Split(DegreeOfParallelism)), then run 10 tasks each processing its items one by one (.SelectManyAsync(...)) and merge those back into a single list.

    Worth mentioning there is a simpler approach:

    double[] result2 = await Enumerable.Range(0, 1000000)
        .Select(async i => await CalculateAsync(i).ConfigureAwait(false))
        .WhenAll()
        .ConfigureAwait(false);
    

    But it needs a precaution: if you have a source collection that is too big, it will schedule a Task for every item right away, which may cause significant performance hits.

    Extension methods used in examples above look as follows:

    public static class CollectionExtensions
    {
        /// <summary>
        /// Splits collection into number of collections of nearly equal size.
        /// </summary>
        public static IEnumerable<List<T>> Split<T>(this IEnumerable<T> src, int slicesCount)
        {
            if (slicesCount <= 0) throw new ArgumentOutOfRangeException(nameof(slicesCount));
    
            List<T> source = src.ToList();
            var sourceIndex = 0;
            for (var targetIndex = 0; targetIndex < slicesCount; targetIndex++)
            {
                var list = new List<T>();
                int itemsLeft = source.Count - targetIndex;
                while (slicesCount * list.Count < itemsLeft)
                {
                    list.Add(source[sourceIndex++]);
                }
    
                yield return list;
            }
        }
    
        /// <summary>
        /// Takes collection of collections, projects those in parallel and merges results.
        /// </summary>
        public static async Task<IEnumerable<TResult>> SelectManyAsync<T, TResult>(
            this IEnumerable<IEnumerable<T>> source,
            Func<T, Task<TResult>> func)
        {
            List<TResult>[] slices = await source
                .Select(async slice => await slice.SelectListAsync(func).ConfigureAwait(false))
                .WhenAll()
                .ConfigureAwait(false);
            return slices.SelectMany(s => s);
        }
    
        /// <summary>Runs selector and awaits results.</summary>
        public static async Task<List<TResult>> SelectListAsync<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, Task<TResult>> selector)
        {
            List<TResult> result = new List<TResult>();
            foreach (TSource source1 in source)
            {
                TResult result1 = await selector(source1).ConfigureAwait(false);
                result.Add(result1);
            }
            return result;
        }
    
        /// <summary>Wraps tasks with Task.WhenAll.</summary>
        public static Task<TResult[]> WhenAll<TResult>(this IEnumerable<Task<TResult>> source)
        {
            return Task.WhenAll<TResult>(source);
        }
    }
    
    0 讨论(0)
  • 2020-11-22 01:30

    The whole idea behind Parallel.ForEach() is that you have a set of threads and each thread processes part of the collection. As you noticed, this doesn't work with async-await, where you want to release the thread for the duration of the async call.

    You could “fix” that by blocking the ForEach() threads, but that defeats the whole point of async-await.

    What you could do is to use TPL Dataflow instead of Parallel.ForEach(), which supports asynchronous Tasks well.

    Specifically, your code could be written using a TransformBlock that transforms each id into a Customer using the async lambda. This block can be configured to execute in parallel. You would link that block to an ActionBlock that writes each Customer to the console. After you set up the block network, you can Post() each id to the TransformBlock.

    In code:

    var ids = new List<string> { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10" };
    
    var getCustomerBlock = new TransformBlock<string, Customer>(
        async i =>
        {
            ICustomerRepo repo = new CustomerRepo();
            return await repo.GetCustomer(i);
        }, new ExecutionDataflowBlockOptions
        {
            MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded
        });
    var writeCustomerBlock = new ActionBlock<Customer>(c => Console.WriteLine(c.ID));
    getCustomerBlock.LinkTo(
        writeCustomerBlock, new DataflowLinkOptions
        {
            PropagateCompletion = true
        });
    
    foreach (var id in ids)
        getCustomerBlock.Post(id);
    
    getCustomerBlock.Complete();
    writeCustomerBlock.Completion.Wait();
    

    Although you probably want to limit the parallelism of the TransformBlock to some small constant. Also, you could limit the capacity of the TransformBlock and add the items to it asynchronously using SendAsync(), for example if the collection is too big.

    As an added benefit when compared to your code (if it worked) is that the writing will start as soon as a single item is finished, and not wait until all of the processing is finished.

    0 讨论(0)
  • 2020-11-22 01:39

    svick's answer is (as usual) excellent.

    However, I find Dataflow to be more useful when you actually have large amounts of data to transfer. Or when you need an async-compatible queue.

    In your case, a simpler solution is to just use the async-style parallelism:

    var ids = new List<string>() { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10" };
    
    var customerTasks = ids.Select(i =>
      {
        ICustomerRepo repo = new CustomerRepo();
        return repo.GetCustomer(i);
      });
    var customers = await Task.WhenAll(customerTasks);
    
    foreach (var customer in customers)
    {
      Console.WriteLine(customer.ID);
    }
    
    Console.ReadKey();
    
    0 讨论(0)
  • 2020-11-22 01:40

    This should be pretty efficient, and easier than getting the whole TPL Dataflow working:

    var customers = await ids.SelectAsync(async i =>
    {
        ICustomerRepo repo = new CustomerRepo();
        return await repo.GetCustomer(i);
    });
    
    ...
    
    public static async Task<IList<TResult>> SelectAsync<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, Task<TResult>> selector, int maxDegreesOfParallelism = 4)
    {
        var results = new List<TResult>();
    
        var activeTasks = new HashSet<Task<TResult>>();
        foreach (var item in source)
        {
            activeTasks.Add(selector(item));
            if (activeTasks.Count >= maxDegreesOfParallelism)
            {
                var completed = await Task.WhenAny(activeTasks);
                activeTasks.Remove(completed);
                results.Add(completed.Result);
            }
        }
    
        results.AddRange(await Task.WhenAll(activeTasks));
        return results;
    }
    
    0 讨论(0)
提交回复
热议问题