The problem I am trying to solve is that I have a data frame with a sorted POSIXct variable in it. Each row is categorized and I want to get the time differences between eac
Try this:
library(dplyr)
df %>%
arrange(category, randtime) %>%
group_by(category) %>%
mutate(diff = randtime - lag(randtime),
diff_secs = as.numeric(diff, units = 'secs'))
# category randtime diff diff_secs
# (fctr) (time) (dfft) (dbl)
# 1 A 2015-06-01 11:10:54 NA hours NA
# 2 A 2015-06-01 15:35:04 4.402785 hours 15850.027
# 3 A 2015-06-01 17:01:22 1.438395 hours 5178.222
# 4 B 2015-06-01 08:14:46 NA hours NA
# 5 B 2015-06-01 16:53:43 518.955379 hours 1868239.364
# 6 B 2015-06-01 17:37:48 44.090950 hours 158727.420
You may also want to add replace(is.na(.), 0)
to the chain.
In base R you can use:
# creating an ordered data.frame
df <- data.frame(category, randtime)
df <- df[order(df$category, df$randtime),]
# calculating the timedifference
# option 1:
df$tdiff <- unlist(tapply(df$randtime, INDEX = df$category,
FUN = function(x) c(0, `units<-`(diff(x), "secs"))))
# option 2:
df$tdiff <- unlist(tapply(df$randtime, INDEX = df$category,
FUN = function(x) c(0, diff(as.numeric(x)))))
which gives:
> df category randtime tdiff 6 A 2015-06-01 11:10:54 0.0000 15 A 2015-06-01 15:35:04 15850.0271 18 A 2015-06-01 17:01:22 5178.2223 1 B 2015-06-01 08:14:46 0.0000 17 B 2015-06-01 16:53:43 31137.3227 19 B 2015-06-01 17:37:48 2645.4570 3 C 2015-06-01 10:09:50 0.0000 7 C 2015-06-01 12:46:40 9409.9693 9 C 2015-06-01 13:56:29 4188.4578 10 C 2015-06-01 14:24:18 1669.1326 12 C 2015-06-01 14:54:25 1807.1447 14 C 2015-06-01 15:05:07 641.7068 2 D 2015-06-01 09:28:16 0.0000 13 D 2015-06-01 14:55:40 19644.8313 4 E 2015-06-01 10:18:58 0.0000 5 E 2015-06-01 10:53:29 2071.2223 8 E 2015-06-01 13:26:26 9176.6263 11 E 2015-06-01 14:33:25 4019.0319 16 E 2015-06-01 15:57:16 5031.4183 20 E 2015-06-01 17:56:33 7156.8849
If you want minutes or hours, you can use "mins"
or "hours"
instead of "secs"
.
An alternative with the data.table
package:
library(data.table)
# creating an ordered/keyed data.table
dt <- data.table(category, randtime, key = c("category", "randtime"))
# calculating the timedifference
# option 1:
dt[, tdiff := difftime(randtime, shift(randtime, fill=randtime[1L]), units="secs"), by=category]
# option 2:
dt[, tdiff := c(0, `units<-`(diff(randtime), "secs")), by = category]
# option 3:
dt[ , test := c(0, diff(as.numeric(randtime))), category]
which results in:
> dt category randtime tdiff 1: A 2015-06-01 11:10:54 0.0000 secs 2: A 2015-06-01 15:35:04 15850.0271 secs 3: A 2015-06-01 17:01:22 5178.2223 secs 4: B 2015-06-01 08:14:46 0.0000 secs 5: B 2015-06-01 16:53:43 31137.3227 secs 6: B 2015-06-01 17:37:48 2645.4570 secs 7: C 2015-06-01 10:09:50 0.0000 secs 8: C 2015-06-01 12:46:40 9409.9693 secs 9: C 2015-06-01 13:56:29 4188.4578 secs 10: C 2015-06-01 14:24:18 1669.1326 secs 11: C 2015-06-01 14:54:25 1807.1447 secs 12: C 2015-06-01 15:05:07 641.7068 secs 13: D 2015-06-01 09:28:16 0.0000 secs 14: D 2015-06-01 14:55:40 19644.8313 secs 15: E 2015-06-01 10:18:58 0.0000 secs 16: E 2015-06-01 10:53:29 2071.2223 secs 17: E 2015-06-01 13:26:26 9176.6263 secs 18: E 2015-06-01 14:33:25 4019.0319 secs 19: E 2015-06-01 15:57:16 5031.4183 secs 20: E 2015-06-01 17:56:33 7156.8849 secs