How do you find a roman numeral equivalent of an integer

前端 未结 3 1316
南笙
南笙 2020-12-01 12:41

How do you find a roman numeral equivalent of an integer. Is there a java library which provides this capability?

I did find a similar question, but I would prefer a

相关标签:
3条回答
  • 2020-12-01 12:54

    This is the code I am using, right next to the excel column name converter. Why isnt there an apache library for this stuff?

    private static final char[] R = {'ↂ', 'ↁ', 'M', 'D', 'C', 'L', 'X', 'V', 'I'};
    // or, as suggested by Andrei Fierbinteanu
    // private static final String[] R = {"X\u0305", "V\u0305", "M", "D", "C", "L", "X", "V", "I"};
    private static final int MAX = 10000; // value of R[0], must be a power of 10
    
    private static final int[][] DIGITS = {
        {},{0},{0,0},{0,0,0},{0,1},{1},
        {1,0},{1,0,0},{1,0,0,0},{0,2}};
    
    public static String int2roman(int number) {
        if (number < 0 || number >= MAX*4) throw new IllegalArgumentException(
                "int2roman: " + number + " is not between 0 and " + (MAX*4-1));
        if (number == 0) return "N";
        StringBuilder sb = new StringBuilder();
        int i = 0, m = MAX;
        while (number > 0) {
            int[] d = DIGITS[number / m];
            for (int n: d) sb.append(R[i-n]);
            number %= m;
            m /= 10;
            i += 2;
        }
        return sb.toString();
    }
    

    Edit:

    Now that I look at it again, the loop can be condensed to

        for (int i = 0, m = MAX; m > 0; m /= 10, i += 2) {
            int[] d = DIGITS[(number/m)%10];
            for (int n: d) sb.append(R[i-n]);
        }
    

    making the code even less readable ;-)

    0 讨论(0)
  • 2020-12-01 13:10

    Here is a link for many languages including Java. Here's an extract of relevance:

    public class RN {
    
        enum Numeral {
            I(1), IV(4), V(5), IX(9), X(10), XL(40), L(50), XC(90), C(100), CD(400), D(500), CM(900), M(1000);
            int weight;
    
            Numeral(int weight) {
                this.weight = weight;
            }
        };
    
        public static String roman(long n) {
    
            if( n <= 0) {
                throw new IllegalArgumentException();
            }
    
            StringBuilder buf = new StringBuilder();
    
            final Numeral[] values = Numeral.values();
            for (int i = values.length - 1; i >= 0; i--) {
                while (n >= values[i].weight) {
                    buf.append(values[i]);
                    n -= values[i].weight;
                }
            }
            return buf.toString();
        }
    
        public static void test(long n) {
            System.out.println(n + " = " + roman(n));
        }
    
        public static void main(String[] args) {
            test(1999);
            test(25);
            test(944);
            test(0);
        }
    
    }
    
    0 讨论(0)
  • 2020-12-01 13:17

    This my answer:

    Use this libreries...

    import java.util.LinkedHashMap;
    import java.util.Map;
    

    The code

      public static String RomanNumerals(int Int) {
        LinkedHashMap<String, Integer> roman_numerals = new LinkedHashMap<String, Integer>();
        roman_numerals.put("M", 1000);
        roman_numerals.put("CM", 900);
        roman_numerals.put("D", 500);
        roman_numerals.put("CD", 400);
        roman_numerals.put("C", 100);
        roman_numerals.put("XC", 90);
        roman_numerals.put("L", 50);
        roman_numerals.put("XL", 40);
        roman_numerals.put("X", 10);
        roman_numerals.put("IX", 9);
        roman_numerals.put("V", 5);
        roman_numerals.put("IV", 4);
        roman_numerals.put("I", 1);
        String res = "";
        for(Map.Entry<String, Integer> entry : roman_numerals.entrySet()){
          int matches = Int/entry.getValue();
          res += repeat(entry.getKey(), matches);
          Int = Int % entry.getValue();
        }
        return res;
      }
      public static String repeat(String s, int n) {
        if(s == null) {
            return null;
        }
        final StringBuilder sb = new StringBuilder();
        for(int i = 0; i < n; i++) {
            sb.append(s);
        }
        return sb.toString();
      }
    

    Testing the code

      for (int i = 1;i<256;i++) {
        System.out.println("i="+i+" -> "+RomanNumerals(i));
      }
    

    The output:

      i=1 -> I
      i=2 -> II
      i=3 -> III
      i=4 -> IV
      i=5 -> V
      i=6 -> VI
      i=7 -> VII
      i=8 -> VIII
      i=9 -> IX
      i=10 -> X
      i=11 -> XI
      i=12 -> XII
      i=13 -> XIII
      i=14 -> XIV
      i=15 -> XV
      i=16 -> XVI
      i=17 -> XVII
      i=18 -> XVIII
      i=19 -> XIX
      i=20 -> XX
      i=21 -> XXI
      i=22 -> XXII
      i=23 -> XXIII
      i=24 -> XXIV
      i=25 -> XXV
      i=26 -> XXVI
      i=27 -> XXVII
      i=28 -> XXVIII
      i=29 -> XXIX
      i=30 -> XXX
      i=31 -> XXXI
      i=32 -> XXXII
      i=33 -> XXXIII
      i=34 -> XXXIV
      i=35 -> XXXV
      i=36 -> XXXVI
      i=37 -> XXXVII
      i=38 -> XXXVIII
      i=39 -> XXXIX
      i=40 -> XL
      i=41 -> XLI
      i=42 -> XLII
      i=43 -> XLIII
      i=44 -> XLIV
      i=45 -> XLV
      i=46 -> XLVI
      i=47 -> XLVII
      i=48 -> XLVIII
      i=49 -> XLIX
      i=50 -> L
      i=51 -> LI
      i=52 -> LII
      i=53 -> LIII
      i=54 -> LIV
      i=55 -> LV
      i=56 -> LVI
      i=57 -> LVII
      i=58 -> LVIII
      i=59 -> LIX
      i=60 -> LX
      i=61 -> LXI
      i=62 -> LXII
      i=63 -> LXIII
      i=64 -> LXIV
      i=65 -> LXV
      i=66 -> LXVI
      i=67 -> LXVII
      i=68 -> LXVIII
      i=69 -> LXIX
      i=70 -> LXX
      i=71 -> LXXI
      i=72 -> LXXII
      i=73 -> LXXIII
      i=74 -> LXXIV
      i=75 -> LXXV
      i=76 -> LXXVI
      i=77 -> LXXVII
      i=78 -> LXXVIII
      i=79 -> LXXIX
      i=80 -> LXXX
      i=81 -> LXXXI
      i=82 -> LXXXII
      i=83 -> LXXXIII
      i=84 -> LXXXIV
      i=85 -> LXXXV
      i=86 -> LXXXVI
      i=87 -> LXXXVII
      i=88 -> LXXXVIII
      i=89 -> LXXXIX
      i=90 -> XC
      i=91 -> XCI
      i=92 -> XCII
      i=93 -> XCIII
      i=94 -> XCIV
      i=95 -> XCV
      i=96 -> XCVI
      i=97 -> XCVII
      i=98 -> XCVIII
      i=99 -> XCIX
      i=100 -> C
      i=101 -> CI
      i=102 -> CII
      i=103 -> CIII
      i=104 -> CIV
      i=105 -> CV
      i=106 -> CVI
      i=107 -> CVII
      i=108 -> CVIII
      i=109 -> CIX
      i=110 -> CX
      i=111 -> CXI
      i=112 -> CXII
      i=113 -> CXIII
      i=114 -> CXIV
      i=115 -> CXV
      i=116 -> CXVI
      i=117 -> CXVII
      i=118 -> CXVIII
      i=119 -> CXIX
      i=120 -> CXX
      i=121 -> CXXI
      i=122 -> CXXII
      i=123 -> CXXIII
      i=124 -> CXXIV
      i=125 -> CXXV
      i=126 -> CXXVI
      i=127 -> CXXVII
      i=128 -> CXXVIII
      i=129 -> CXXIX
      i=130 -> CXXX
      i=131 -> CXXXI
      i=132 -> CXXXII
      i=133 -> CXXXIII
      i=134 -> CXXXIV
      i=135 -> CXXXV
      i=136 -> CXXXVI
      i=137 -> CXXXVII
      i=138 -> CXXXVIII
      i=139 -> CXXXIX
      i=140 -> CXL
      i=141 -> CXLI
      i=142 -> CXLII
      i=143 -> CXLIII
      i=144 -> CXLIV
      i=145 -> CXLV
      i=146 -> CXLVI
      i=147 -> CXLVII
      i=148 -> CXLVIII
      i=149 -> CXLIX
      i=150 -> CL
      i=151 -> CLI
      i=152 -> CLII
      i=153 -> CLIII
      i=154 -> CLIV
      i=155 -> CLV
      i=156 -> CLVI
      i=157 -> CLVII
      i=158 -> CLVIII
      i=159 -> CLIX
      i=160 -> CLX
      i=161 -> CLXI
      i=162 -> CLXII
      i=163 -> CLXIII
      i=164 -> CLXIV
      i=165 -> CLXV
      i=166 -> CLXVI
      i=167 -> CLXVII
      i=168 -> CLXVIII
      i=169 -> CLXIX
      i=170 -> CLXX
      i=171 -> CLXXI
      i=172 -> CLXXII
      i=173 -> CLXXIII
      i=174 -> CLXXIV
      i=175 -> CLXXV
      i=176 -> CLXXVI
      i=177 -> CLXXVII
      i=178 -> CLXXVIII
      i=179 -> CLXXIX
      i=180 -> CLXXX
      i=181 -> CLXXXI
      i=182 -> CLXXXII
      i=183 -> CLXXXIII
      i=184 -> CLXXXIV
      i=185 -> CLXXXV
      i=186 -> CLXXXVI
      i=187 -> CLXXXVII
      i=188 -> CLXXXVIII
      i=189 -> CLXXXIX
      i=190 -> CXC
      i=191 -> CXCI
      i=192 -> CXCII
      i=193 -> CXCIII
      i=194 -> CXCIV
      i=195 -> CXCV
      i=196 -> CXCVI
      i=197 -> CXCVII
      i=198 -> CXCVIII
      i=199 -> CXCIX
      i=200 -> CC
      i=201 -> CCI
      i=202 -> CCII
      i=203 -> CCIII
      i=204 -> CCIV
      i=205 -> CCV
      i=206 -> CCVI
      i=207 -> CCVII
      i=208 -> CCVIII
      i=209 -> CCIX
      i=210 -> CCX
      i=211 -> CCXI
      i=212 -> CCXII
      i=213 -> CCXIII
      i=214 -> CCXIV
      i=215 -> CCXV
      i=216 -> CCXVI
      i=217 -> CCXVII
      i=218 -> CCXVIII
      i=219 -> CCXIX
      i=220 -> CCXX
      i=221 -> CCXXI
      i=222 -> CCXXII
      i=223 -> CCXXIII
      i=224 -> CCXXIV
      i=225 -> CCXXV
      i=226 -> CCXXVI
      i=227 -> CCXXVII
      i=228 -> CCXXVIII
      i=229 -> CCXXIX
      i=230 -> CCXXX
      i=231 -> CCXXXI
      i=232 -> CCXXXII
      i=233 -> CCXXXIII
      i=234 -> CCXXXIV
      i=235 -> CCXXXV
      i=236 -> CCXXXVI
      i=237 -> CCXXXVII
      i=238 -> CCXXXVIII
      i=239 -> CCXXXIX
      i=240 -> CCXL
      i=241 -> CCXLI
      i=242 -> CCXLII
      i=243 -> CCXLIII
      i=244 -> CCXLIV
      i=245 -> CCXLV
      i=246 -> CCXLVI
      i=247 -> CCXLVII
      i=248 -> CCXLVIII
      i=249 -> CCXLIX
      i=250 -> CCL
      i=251 -> CCLI
      i=252 -> CCLII
      i=253 -> CCLIII
      i=254 -> CCLIV
      i=255 -> CCLV
    

    Best Regards

    0 讨论(0)
提交回复
热议问题