Using numpy to build an array of all combinations of two arrays

后端 未结 10 1307
温柔的废话
温柔的废话 2020-11-22 00:41

I\'m trying to run over the parameters space of a 6 parameter function to study it\'s numerical behavior before trying to do anything complex with it so I\'m searching for a

相关标签:
10条回答
  • 2020-11-22 01:17

    The following numpy implementation should be approx. 2x the speed of the given answer:

    def cartesian2(arrays):
        arrays = [np.asarray(a) for a in arrays]
        shape = (len(x) for x in arrays)
    
        ix = np.indices(shape, dtype=int)
        ix = ix.reshape(len(arrays), -1).T
    
        for n, arr in enumerate(arrays):
            ix[:, n] = arrays[n][ix[:, n]]
    
        return ix
    
    0 讨论(0)
  • 2020-11-22 01:20

    It looks like you want a grid to evaluate your function, in which case you can use numpy.ogrid (open) or numpy.mgrid (fleshed out):

    import numpy
    my_grid = numpy.mgrid[[slice(0,1,0.1)]*6]
    
    0 讨论(0)
  • 2020-11-22 01:22

    Here's yet another way, using pure NumPy, no recursion, no list comprehension, and no explicit for loops. It's about 20% slower than the original answer, and it's based on np.meshgrid.

    def cartesian(*arrays):
        mesh = np.meshgrid(*arrays)  # standard numpy meshgrid
        dim = len(mesh)  # number of dimensions
        elements = mesh[0].size  # number of elements, any index will do
        flat = np.concatenate(mesh).ravel()  # flatten the whole meshgrid
        reshape = np.reshape(flat, (dim, elements)).T  # reshape and transpose
        return reshape
    

    For example,

    x = np.arange(3)
    a = cartesian(x, x, x, x, x)
    print(a)
    

    gives

    [[0 0 0 0 0]
     [0 0 0 0 1]
     [0 0 0 0 2]
     ..., 
     [2 2 2 2 0]
     [2 2 2 2 1]
     [2 2 2 2 2]]
    
    0 讨论(0)
  • 2020-11-22 01:28

    Pandas merge offers a naive, fast solution to the problem:

    # given the lists
    x, y, z = [1, 2, 3], [4, 5], [6, 7]
    
    # get dfs with same, constant index 
    x = pd.DataFrame({'x': x}, index=np.repeat(0, len(x))
    y = pd.DataFrame({'y': y}, index=np.repeat(0, len(y))
    z = pd.DataFrame({'z': z}, index=np.repeat(0, len(z))
    
    # get all permutations stored in a new df
    df = pd.merge(x, pd.merge(y, z, left_index=True, righ_index=True),
                  left_index=True, right_index=True)
    
    0 讨论(0)
  • 2020-11-22 01:29

    In newer version of numpy (>1.8.x), numpy.meshgrid() provides a much faster implementation:

    @pv's solution

    In [113]:
    
    %timeit cartesian(([1, 2, 3], [4, 5], [6, 7]))
    10000 loops, best of 3: 135 µs per loop
    In [114]:
    
    cartesian(([1, 2, 3], [4, 5], [6, 7]))
    
    Out[114]:
    array([[1, 4, 6],
           [1, 4, 7],
           [1, 5, 6],
           [1, 5, 7],
           [2, 4, 6],
           [2, 4, 7],
           [2, 5, 6],
           [2, 5, 7],
           [3, 4, 6],
           [3, 4, 7],
           [3, 5, 6],
           [3, 5, 7]])
    

    numpy.meshgrid() use to be 2D only, now it is capable of ND. In this case, 3D:

    In [115]:
    
    %timeit np.array(np.meshgrid([1, 2, 3], [4, 5], [6, 7])).T.reshape(-1,3)
    10000 loops, best of 3: 74.1 µs per loop
    In [116]:
    
    np.array(np.meshgrid([1, 2, 3], [4, 5], [6, 7])).T.reshape(-1,3)
    
    Out[116]:
    array([[1, 4, 6],
           [1, 5, 6],
           [2, 4, 6],
           [2, 5, 6],
           [3, 4, 6],
           [3, 5, 6],
           [1, 4, 7],
           [1, 5, 7],
           [2, 4, 7],
           [2, 5, 7],
           [3, 4, 7],
           [3, 5, 7]])
    

    Note that the order of the final resultant is slightly different.

    0 讨论(0)
  • 2020-11-22 01:30

    Here's a pure-numpy implementation. It's about 5× faster than using itertools.

    
    import numpy as np
    
    def cartesian(arrays, out=None):
        """
        Generate a cartesian product of input arrays.
    
        Parameters
        ----------
        arrays : list of array-like
            1-D arrays to form the cartesian product of.
        out : ndarray
            Array to place the cartesian product in.
    
        Returns
        -------
        out : ndarray
            2-D array of shape (M, len(arrays)) containing cartesian products
            formed of input arrays.
    
        Examples
        --------
        >>> cartesian(([1, 2, 3], [4, 5], [6, 7]))
        array([[1, 4, 6],
               [1, 4, 7],
               [1, 5, 6],
               [1, 5, 7],
               [2, 4, 6],
               [2, 4, 7],
               [2, 5, 6],
               [2, 5, 7],
               [3, 4, 6],
               [3, 4, 7],
               [3, 5, 6],
               [3, 5, 7]])
    
        """
    
        arrays = [np.asarray(x) for x in arrays]
        dtype = arrays[0].dtype
    
        n = np.prod([x.size for x in arrays])
        if out is None:
            out = np.zeros([n, len(arrays)], dtype=dtype)
    
        m = n / arrays[0].size
        out[:,0] = np.repeat(arrays[0], m)
        if arrays[1:]:
            cartesian(arrays[1:], out=out[0:m, 1:])
            for j in xrange(1, arrays[0].size):
                out[j*m:(j+1)*m, 1:] = out[0:m, 1:]
        return out
    
    0 讨论(0)
提交回复
热议问题