I want to know what a \"virtual base class\" is and what it means.
Let me show an example:
class Foo
{
public:
void DoSomething() { /* .
Explaining multiple-inheritance with virtual bases requires a knowledge of the C++ object model. And explaining the topic clearly is best done in an article and not in a comment box.
The best, readable explanation I found that solved all my doubts on this subject was this article: http://www.phpcompiler.org/articles/virtualinheritance.html
You really won't need to read anything else on the topic (unless you are a compiler writer) after reading that...
Diamond inheritance runnable usage example
This example shows how to use a virtual base class in the typical scenario: to solve diamond inheritance problems.
Consider the following working example:
main.cpp
#include <cassert>
class A {
public:
A(){}
A(int i) : i(i) {}
int i;
virtual int f() = 0;
virtual int g() = 0;
virtual int h() = 0;
};
class B : public virtual A {
public:
B(int j) : j(j) {}
int j;
virtual int f() { return this->i + this->j; }
};
class C : public virtual A {
public:
C(int k) : k(k) {}
int k;
virtual int g() { return this->i + this->k; }
};
class D : public B, public C {
public:
D(int i, int j, int k) : A(i), B(j), C(k) {}
virtual int h() { return this->i + this->j + this->k; }
};
int main() {
D d = D(1, 2, 4);
assert(d.f() == 3);
assert(d.g() == 5);
assert(d.h() == 7);
}
Compile and run:
g++ -ggdb3 -O0 -std=c++11 -Wall -Wextra -pedantic -o main.out main.cpp
./main.out
If we remove the virtual
into:
class B : public virtual A
we would get a wall of errors about GCC being unable to resolve D members and methods that were inherited twice via A:
main.cpp:27:7: warning: virtual base ‘A’ inaccessible in ‘D’ due to ambiguity [-Wextra]
27 | class D : public B, public C {
| ^
main.cpp: In member function ‘virtual int D::h()’:
main.cpp:30:40: error: request for member ‘i’ is ambiguous
30 | virtual int h() { return this->i + this->j + this->k; }
| ^
main.cpp:7:13: note: candidates are: ‘int A::i’
7 | int i;
| ^
main.cpp:7:13: note: ‘int A::i’
main.cpp: In function ‘int main()’:
main.cpp:34:20: error: invalid cast to abstract class type ‘D’
34 | D d = D(1, 2, 4);
| ^
main.cpp:27:7: note: because the following virtual functions are pure within ‘D’:
27 | class D : public B, public C {
| ^
main.cpp:8:21: note: ‘virtual int A::f()’
8 | virtual int f() = 0;
| ^
main.cpp:9:21: note: ‘virtual int A::g()’
9 | virtual int g() = 0;
| ^
main.cpp:34:7: error: cannot declare variable ‘d’ to be of abstract type ‘D’
34 | D d = D(1, 2, 4);
| ^
In file included from /usr/include/c++/9/cassert:44,
from main.cpp:1:
main.cpp:35:14: error: request for member ‘f’ is ambiguous
35 | assert(d.f() == 3);
| ^
main.cpp:8:21: note: candidates are: ‘virtual int A::f()’
8 | virtual int f() = 0;
| ^
main.cpp:17:21: note: ‘virtual int B::f()’
17 | virtual int f() { return this->i + this->j; }
| ^
In file included from /usr/include/c++/9/cassert:44,
from main.cpp:1:
main.cpp:36:14: error: request for member ‘g’ is ambiguous
36 | assert(d.g() == 5);
| ^
main.cpp:9:21: note: candidates are: ‘virtual int A::g()’
9 | virtual int g() = 0;
| ^
main.cpp:24:21: note: ‘virtual int C::g()’
24 | virtual int g() { return this->i + this->k; }
| ^
main.cpp:9:21: note: ‘virtual int A::g()’
9 | virtual int g() = 0;
| ^
./main.out
Tested on GCC 9.3.0, Ubuntu 20.04.
A virtual base class is a class that cannot be instantiated : you cannot create direct object out of it.
I think you are confusing two very different things. Virtual inheritance is not the same thing as an abstract class. Virtual inheritance modifies the behaviour of function calls; sometimes it resolves function calls that otherwise would be ambiguous, sometimes it defers function call handling to a class other than that one would expect in a non-virtual inheritance.
With typical 3 level non-diamond non-virtual-inheritance inheritance, when you instantiate a new most-derived-object, new is called and the size required for the object is resolved from the class type by the compiler and passed to new.
new has a signature:
_GLIBCXX_WEAK_DEFINITION void *
operator new (std::size_t sz) _GLIBCXX_THROW (std::bad_alloc)
And makes a call to malloc
, returning the void pointer
This is then passed to the constructor of the most derived object, which will immediately call the middle constructor and then the middle constructor will immediately call the base constructor. The base then stores a pointer to its virtual table at the start of the object and then its attributes after it. This then returns to the middle constructor which will store its virtual table pointer at the same location and then its attributes after the attributes that would have been stored by the base constructor. It the returns to the most derived constructor, which stores a pointer to its virtual table at the same location and and then its attributes after the attributes that would have been stored by the middle constructor.
Because the virtual table pointer is overwritten, the virtual table pointer ends up always being the one of the most derived class. Virtualness propagates towards the most derived class so if a function is virtual in the middle class, it will be virtual in the most derived class but not the base class. If you polymorphically cast an instance of the most derived class to a pointer to the base class then the compiler will not resolve this to an indirect call to the virtual table and instead will call the function directly A::function()
. If a function is virtual for the type you have cast it to then it will resolve to a call into the virtual table which will always be that of the most derived class. If it is not virtual for that type then it will just call Type::function()
and pass the object pointer to it, cast to Type.
Actually when I say pointer to its virtual table, it's actually always an offset of 16 into the virtual table.
vtable for Base:
.quad 0
.quad typeinfo for Base
.quad Base::CommonFunction()
.quad Base::VirtualFunction()
pointer is typically to the first function i.e.
mov edx, OFFSET FLAT:vtable for Base+16
virtual
is not required again in more-derived classes if it is virtual in a less-derived class because it propagates. But it can be used to show that the function is indeed a virtual function, without having to check the classes it inherits's type definitions.
override
is another compiler guard that says that this function is overriding something and if it isn't then throw a compiler error.
= 0
means that this is an abstract function
final
prevents a virtual function from being implemented again in a more derived class and will make sure that the virtual table of the most derived class contains the final function of that class.
= default
makes it explicit in documentation that the compiler will use the default implementation
= delete
give a compiler error if a call to this is attempted
Consider
class Base
{
int a = 1;
int b = 2;
public:
void virtual CommonFunction(){} ;
void virtual VirtualFunction(){} ;
};
class DerivedClass1: virtual public Base
{
int c = 3;
public:
void virtual DerivedCommonFunction(){} ;
void virtual VirtualFunction(){} ;
};
class DerivedClass2 : virtual public Base
{
int d = 4;
public:
//void virtual DerivedCommonFunction(){} ;
void virtual VirtualFunction(){} ;
void virtual DerivedCommonFunction2(){} ;
};
class DerivedDerivedClass : public DerivedClass1, public DerivedClass2
{
int e = 5;
public:
void virtual DerivedDerivedCommonFunction(){} ;
void virtual VirtualFunction(){} ;
};
int main () {
DerivedDerivedClass* d = new DerivedDerivedClass;
d->VirtualFunction();
d->DerivedCommonFunction();
d->DerivedCommonFunction2();
d->DerivedDerivedCommonFunction();
((DerivedClass2*)d)->DerivedCommonFunction2();
((Base*)d)->VirtualFunction();
}
Without virtually inheriting the bass class you will get an object that looks like this:
Instead of this:
I.e. there will be 2 base objects.
In the virtual diamond inheritance situation above, after new is called, it calls the most derived constructor and in that constructor, it calls all 3 derived constructors passing offsets into its virtual table table, instead of calling just calling DerivedClass1::DerivedClass1()
and DerivedClass2::DerivedClass2()
and then those both calling Base::Base()
The following is all compiled in debug mode -O0 so there will be redundant assembly
main:
.LFB8:
push rbp
mov rbp, rsp
push rbx
sub rsp, 24
mov edi, 48 //pass size to new
call operator new(unsigned long) //call new
mov rbx, rax //move the address of the allocation to rbx
mov rdi, rbx //move it to rdi i.e. pass to the call
call DerivedDerivedClass::DerivedDerivedClass() [complete object constructor] //construct on this address
mov QWORD PTR [rbp-24], rbx //store the address of the object on the stack as d
DerivedDerivedClass::DerivedDerivedClass() [complete object constructor]:
.LFB20:
push rbp
mov rbp, rsp
sub rsp, 16
mov QWORD PTR [rbp-8], rdi
.LBB5:
mov rax, QWORD PTR [rbp-8] // object address now in rax
add rax, 32 //increment address by 32
mov rdi, rax // move object address+32 to rdi i.e. pass to call
call Base::Base() [base object constructor]
mov rax, QWORD PTR [rbp-8] //move object address to rax
mov edx, OFFSET FLAT:VTT for DerivedDerivedClass+8 //move address of VTT+8 to edx
mov rsi, rdx //pass VTT+8 address as 2nd parameter
mov rdi, rax //object address as first
call DerivedClass1::DerivedClass1() [base object constructor]
mov rax, QWORD PTR [rbp-8] //move object address to rax
add rax, 16 //increment object address by 16
mov edx, OFFSET FLAT:VTT for DerivedDerivedClass+24 //store address of VTT+24 in edx
mov rsi, rdx //pass address of VTT+24 as second parameter
mov rdi, rax //address of object as first
call DerivedClass2::DerivedClass2() [base object constructor]
mov edx, OFFSET FLAT:vtable for DerivedDerivedClass+24 //move this to edx
mov rax, QWORD PTR [rbp-8] // object address now in rax
mov QWORD PTR [rax], rdx. //store address of vtable for DerivedDerivedClass+24 at the start of the object
mov rax, QWORD PTR [rbp-8] // object address now in rax
add rax, 32 // increment object address by 32
mov edx, OFFSET FLAT:vtable for DerivedDerivedClass+120 //move this to edx
mov QWORD PTR [rax], rdx //store vtable for DerivedDerivedClass+120 at object+32 (Base)
mov edx, OFFSET FLAT:vtable for DerivedDerivedClass+72 //store this in edx
mov rax, QWORD PTR [rbp-8] //move object address to rax
mov QWORD PTR [rax+16], rdx //store vtable for DerivedDerivedClass+72 at object+16 (DerivedClass2)
mov rax, QWORD PTR [rbp-8]
mov DWORD PTR [rax+28], 5
.LBE5:
nop
leave
ret
It calls Base::Base()
with a pointer to the object offset 32. Base stores a pointer to its virtual table at the address it receives and its members after it.
Base::Base() [base object constructor]:
.LFB11:
push rbp
mov rbp, rsp
mov QWORD PTR [rbp-8], rdi //stores address of object on stack (-O0)
.LBB2:
mov edx, OFFSET FLAT:vtable for Base+16 //puts vtable for Base+16 in edx
mov rax, QWORD PTR [rbp-8] //copies address of object from stack to rax
mov QWORD PTR [rax], rdx //stores it address of object
mov rax, QWORD PTR [rbp-8] //copies address of object on stack to rax again
mov DWORD PTR [rax+8], 1 //stores a = 1 in the object
mov rax, QWORD PTR [rbp-8] //junk from -O0
mov DWORD PTR [rax+12], 2 //stores b = 2 in the object
.LBE2:
nop
pop rbp
ret
DerivedDerivedClass::DerivedDerivedClass()
then calls DerivedClass1::DerivedClass1()
with a pointer to the object offset 0 and also passes the address of VTT for DerivedDerivedClass+8
DerivedClass1::DerivedClass1() [base object constructor]:
.LFB14:
push rbp
mov rbp, rsp
mov QWORD PTR [rbp-8], rdi //address of object
mov QWORD PTR [rbp-16], rsi //address of VTT+8
.LBB3:
mov rax, QWORD PTR [rbp-16] //address of VTT+8 now in rax
mov rdx, QWORD PTR [rax] //address of DerivedClass1-in-DerivedDerivedClass+24 now in rdx
mov rax, QWORD PTR [rbp-8] //address of object now in rax
mov QWORD PTR [rax], rdx //store address of DerivedClass1-in-.. in the object
mov rax, QWORD PTR [rbp-8] // address of object now in rax
mov rax, QWORD PTR [rax] //address of DerivedClass1-in.. now implicitly in rax
sub rax, 24 //address of DerivedClass1-in-DerivedDerivedClass+0 now in rax
mov rax, QWORD PTR [rax] //value of 32 now in rax
mov rdx, rax // now in rdx
mov rax, QWORD PTR [rbp-8] //address of object now in rax
add rdx, rax //address of object+32 now in rdx
mov rax, QWORD PTR [rbp-16] //address of VTT+8 now in rax
mov rax, QWORD PTR [rax+8] //address of DerivedClass1-in-DerivedDerivedClass+72 (Base::CommonFunction()) now in rax
mov QWORD PTR [rdx], rax //store at address object+32 (offset to Base)
mov rax, QWORD PTR [rbp-8] //store address of object in rax, return
mov DWORD PTR [rax+8], 3 //store its attribute c = 3 in the object
.LBE3:
nop
pop rbp
ret
VTT for DerivedDerivedClass:
.quad vtable for DerivedDerivedClass+24
.quad construction vtable for DerivedClass1-in-DerivedDerivedClass+24
.quad construction vtable for DerivedClass1-in-DerivedDerivedClass+72
.quad construction vtable for DerivedClass2-in-DerivedDerivedClass+24
.quad construction vtable for DerivedClass2-in-DerivedDerivedClass+72
.quad vtable for DerivedDerivedClass+120
.quad vtable for DerivedDerivedClass+72
construction vtable for DerivedClass1-in-DerivedDerivedClass:
.quad 32
.quad 0
.quad typeinfo for DerivedClass1
.quad DerivedClass1::DerivedCommonFunction()
.quad DerivedClass1::VirtualFunction()
.quad -32
.quad 0
.quad -32
.quad typeinfo for DerivedClass1
.quad Base::CommonFunction()
.quad virtual thunk to DerivedClass1::VirtualFunction()
construction vtable for DerivedClass2-in-DerivedDerivedClass:
.quad 16
.quad 0
.quad typeinfo for DerivedClass2
.quad DerivedClass2::VirtualFunction()
.quad DerivedClass2::DerivedCommonFunction2()
.quad -16
.quad 0
.quad -16
.quad typeinfo for DerivedClass2
.quad Base::CommonFunction()
.quad virtual thunk to DerivedClass2::VirtualFunction()
vtable for DerivedDerivedClass:
.quad 32
.quad 0
.quad typeinfo for DerivedDerivedClass
.quad DerivedClass1::DerivedCommonFunction()
.quad DerivedDerivedClass::VirtualFunction()
.quad DerivedDerivedClass::DerivedDerivedCommonFunction()
.quad 16
.quad -16
.quad typeinfo for DerivedDerivedClass
.quad non-virtual thunk to DerivedDerivedClass::VirtualFunction()
.quad DerivedClass2::DerivedCommonFunction2()
.quad -32
.quad 0
.quad -32
.quad typeinfo for DerivedDerivedClass
.quad Base::CommonFunction()
.quad virtual thunk to DerivedDerivedClass::VirtualFunction()
virtual thunk to DerivedClass1::VirtualFunction():
mov r10, QWORD PTR [rdi]
add rdi, QWORD PTR [r10-32]
jmp .LTHUNK0
virtual thunk to DerivedClass2::VirtualFunction():
mov r10, QWORD PTR [rdi]
add rdi, QWORD PTR [r10-32]
jmp .LTHUNK1
virtual thunk to DerivedDerivedClass::VirtualFunction():
mov r10, QWORD PTR [rdi]
add rdi, QWORD PTR [r10-32]
jmp .LTHUNK2
non-virtual thunk to DerivedDerivedClass::VirtualFunction():
sub rdi, 16
jmp .LTHUNK3
.set .LTHUNK0,DerivedClass1::VirtualFunction()
.set .LTHUNK1,DerivedClass2::VirtualFunction()
.set .LTHUNK2,DerivedDerivedClass::VirtualFunction()
.set .LTHUNK3,DerivedDerivedClass::VirtualFunction()
DerivedDerivedClass::DerivedDerivedClass()
then passes the address of the object+16 and the address of VTT for DerivedDerivedClass+24
to DerivedClass2::DerivedClass2()
whose assembly is identical to DerivedClass1::DerivedClass1()
except for the line mov DWORD PTR [rax+8], 3
which obviously has a 4 instead of 3 for d = 4
.
After this, it replaces all 3 virtual table pointers in the object with pointers to offsets in DerivedDerivedClass
's vtable to the representation for that class.
d->VirtualFunction();
:
mov rax, QWORD PTR [rbp-24] //store pointer to virtual table in rax
mov rax, QWORD PTR [rax] //dereference and store in rax
add rax, 8 // call the 2nd function in the table
mov rdx, QWORD PTR [rax] //dereference
mov rax, QWORD PTR [rbp-24]
mov rdi, rax
call rdx
d->DerivedCommonFunction();
:
mov rax, QWORD PTR [rbp-24]
mov rdx, QWORD PTR [rbp-24]
mov rdx, QWORD PTR [rdx]
mov rdx, QWORD PTR [rdx]
mov rdi, rax
call rdx
d->DerivedCommonFunction2();
:
mov rax, QWORD PTR [rbp-24]
lea rdx, [rax+16]
mov rax, QWORD PTR [rbp-24]
mov rax, QWORD PTR [rax+16]
add rax, 8
mov rax, QWORD PTR [rax]
mov rdi, rdx
call rax
d->DerivedDerivedCommonFunction();
:
mov rax, QWORD PTR [rbp-24]
mov rax, QWORD PTR [rax]
add rax, 16
mov rdx, QWORD PTR [rax]
mov rax, QWORD PTR [rbp-24]
mov rdi, rax
call rdx
((DerivedClass2*)d)->DerivedCommonFunction2();
:
cmp QWORD PTR [rbp-24], 0
je .L14
mov rax, QWORD PTR [rbp-24]
add rax, 16
jmp .L15
.L14:
mov eax, 0
.L15:
cmp QWORD PTR [rbp-24], 0
cmp QWORD PTR [rbp-24], 0
je .L18
mov rdx, QWORD PTR [rbp-24]
add rdx, 16
jmp .L19
.L18:
mov edx, 0
.L19:
mov rdx, QWORD PTR [rdx]
add rdx, 8
mov rdx, QWORD PTR [rdx]
mov rdi, rax
call rdx
((Base*)d)->VirtualFunction();
:
cmp QWORD PTR [rbp-24], 0
je .L20
mov rax, QWORD PTR [rbp-24]
mov rax, QWORD PTR [rax]
sub rax, 24
mov rax, QWORD PTR [rax]
mov rdx, rax
mov rax, QWORD PTR [rbp-24]
add rax, rdx
jmp .L21
.L20:
mov eax, 0
.L21:
cmp QWORD PTR [rbp-24], 0
cmp QWORD PTR [rbp-24], 0
je .L24
mov rdx, QWORD PTR [rbp-24]
mov rdx, QWORD PTR [rdx]
sub rdx, 24
mov rdx, QWORD PTR [rdx]
mov rcx, rdx
mov rdx, QWORD PTR [rbp-24]
add rdx, rcx
jmp .L25
.L24:
mov edx, 0
.L25:
mov rdx, QWORD PTR [rdx]
add rdx, 8
mov rdx, QWORD PTR [rdx]
mov rdi, rax
call rdx
You're being a little confusing. I dont' know if you're mixing up some concepts.
You don't have a virtual base class in your OP. You just have a base class.
You did virtual inheritance. This is usually used in multiple inheritance so that multiple derived classes use the members of the base class without reproducing them.
A base class with a pure virtual function is not be instantiated. this requires the syntax that Paul gets at. It is typically used so that derived classes must define those functions.
I don't want to explain any more about this because I don't totally get what you're asking.
In addition to what has already been said about multiple and virtual inheritance(s), there is a very interesting article on Dr Dobb's Journal: Multiple Inheritance Considered Useful