I tried to use groupby to group rows with multiple values.
col val
A Cat
A Tiger
B Ball
B Bat
import pandas as pd
df = pd.read_csv(\"Inputfile.txt\", s
Alternatively you can do it this way:
In [48]: df.groupby('col')['val'].agg('-'.join)
Out[48]:
col
A Cat-Tiger
B Ball-Bat
Name: val, dtype: object
UPDATE: answering question from the comment:
In [2]: df
Out[2]:
col val
0 A Cat
1 A Tiger
2 A Panda
3 B Ball
4 B Bat
5 B Mouse
6 B Egg
In [3]: df.groupby('col')['val'].agg('-'.join)
Out[3]:
col
A Cat-Tiger-Panda
B Ball-Bat-Mouse-Egg
Name: val, dtype: object
Last for convert index or MultiIndex to columns:
df1 = df.groupby('col')['val'].agg('-'.join).reset_index(name='new')
just try
group = df.groupby(['col'])['val'].apply(lambda x: '-'.join(x))