I want to have a binary operator cross
(cross-product/cartesian product) that operates with traversables in Scala:
val x = Seq(1, 2)
val y = Lis
You can do this pretty straightforwardly with an implicit class and a for
-comprehension in Scala 2.10:
implicit class Crossable[X](xs: Traversable[X]) {
def cross[Y](ys: Traversable[Y]) = for { x <- xs; y <- ys } yield (x, y)
}
val xs = Seq(1, 2)
val ys = List("hello", "world", "bye")
And now:
scala> xs cross ys
res0: Traversable[(Int, String)] = List((1,hello), (1,world), ...
This is possible before 2.10—just not quite as concise, since you'd need to define both the class and an implicit conversion method.
You can also write this:
scala> xs cross ys cross List('a, 'b)
res2: Traversable[((Int, String), Symbol)] = List(((1,hello),'a), ...
If you want xs cross ys cross zs
to return a Tuple3
, however, you'll need either a lot of boilerplate or a library like Shapeless.
Here is the implementation of recursive cross product of arbitrary number of lists:
def crossJoin[T](list: Traversable[Traversable[T]]): Traversable[Traversable[T]] =
list match {
case xs :: Nil => xs map (Traversable(_))
case x :: xs => for {
i <- x
j <- crossJoin(xs)
} yield Traversable(i) ++ j
}
crossJoin(
List(
List(3, "b"),
List(1, 8),
List(0, "f", 4.3)
)
)
res0: Traversable[Traversable[Any]] = List(List(3, 1, 0), List(3, 1, f), List(3, 1, 4.3), List(3, 8, 0), List(3, 8, f), List(3, 8, 4.3), List(b, 1, 0), List(b, 1, f), List(b, 1, 4.3), List(b, 8, 0), List(b, 8, f), List(b, 8, 4.3))
Here is something similar to Milad's response, but non-recursive.
def cartesianProduct[T](seqs: Seq[Seq[T]]): Seq[Seq[T]] = {
seqs.foldLeft(Seq(Seq.empty[T]))((b, a) => b.flatMap(i => a.map(j => i ++ Seq(j))))
}
Based off this blog post.
Similar to other responses, just my approach.
def loop(lst: List[List[Int]],acc:List[Int]): List[List[Int]] = {
lst match {
case head :: Nil => head.map(_ :: acc)
case head :: tail => head.flatMap(x => loop(tail,x :: acc))
case Nil => ???
}
}
val l1 = List(10,20,30,40)
val l2 = List(2,4,6)
val l3 = List(3,5,7,9,11)
val lst = List(l1,l2,l3)
loop(lst,List.empty[Int])
class CartesianProduct(product: Traversable[Traversable[_ <: Any]]) {
override def toString(): String = {
product.toString
}
def *(rhs: Traversable[_ <: Any]): CartesianProduct = {
val p = product.flatMap { lhs =>
rhs.map { r =>
lhs.toList :+ r
}
}
new CartesianProduct(p)
}
}
object CartesianProduct {
def apply(traversable: Traversable[_ <: Any]): CartesianProduct = {
new CartesianProduct(
traversable.map { t =>
Traversable(t)
}
)
}
}
// TODO: How can this conversion be made implicit?
val x = CartesianProduct(Set(0, 1))
val y = List("Alice", "Bob")
val z = Array(Math.E, Math.PI)
println(x * y * z) // Set(List(0, Alice, 3.141592653589793), List(0, Alice, 2.718281828459045), List(0, Bob, 3.141592653589793), List(1, Alice, 2.718281828459045), List(0, Bob, 2.718281828459045), List(1, Bob, 3.141592653589793), List(1, Alice, 3.141592653589793), List(1, Bob, 2.718281828459045))
// TODO: How can this conversion be made implicit?
val s0 = CartesianProduct(Seq(0, 0))
val s1 = Seq(0, 0)
println(s0 * s1) // List(List(0, 0), List(0, 0), List(0, 0), List(0, 0))
cross x_list
and y_list
with:
val cross = x_list.flatMap(x => y_list.map(y => (x, y)))