Currently I\'m doing a project which may require using a kNN algorithm to find the top k nearest neighbors for a given point, say P. im using python, sklearn package to do
A small addition to the previous answer. How to use a user defined metric that takes additional arguments.
>>> def mydist(x, y, **kwargs):
... return np.sum((x-y)**kwargs["metric_params"]["power"])
...
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([-1, -1, -2, 1, 1, 2])
>>> nbrs = KNeighborsClassifier(n_neighbors=4, algorithm='ball_tree',
... metric=mydist, metric_params={"power": 2})
>>> nbrs.fit(X, Y)
KNeighborsClassifier(algorithm='ball_tree', leaf_size=30,
metric=<function mydist at 0x7fd259c9cf50>, n_neighbors=4, p=2,
weights='uniform')
>>> nbrs.kneighbors(X)
(array([[ 0., 1., 5., 8.],
[ 0., 1., 2., 13.],
[ 0., 2., 5., 25.],
[ 0., 1., 5., 8.],
[ 0., 1., 2., 13.],
[ 0., 2., 5., 25.]]),
array([[0, 1, 2, 3],
[1, 0, 2, 3],
[2, 1, 0, 3],
[3, 4, 5, 0],
[4, 3, 5, 0],
[5, 4, 3, 0]]))
You pass a metric as metric
param, and additional metric arguments as keyword paramethers to NN constructor:
>>> def mydist(x, y):
... return np.sum((x-y)**2)
...
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> nbrs = NearestNeighbors(n_neighbors=4, algorithm='ball_tree',
... metric='pyfunc', func=mydist)
>>> nbrs.fit(X)
NearestNeighbors(algorithm='ball_tree', leaf_size=30, metric='pyfunc',
n_neighbors=4, radius=1.0)
>>> nbrs.kneighbors(X)
(array([[ 0., 1., 5., 8.],
[ 0., 1., 2., 13.],
[ 0., 2., 5., 25.],
[ 0., 1., 5., 8.],
[ 0., 1., 2., 13.],
[ 0., 2., 5., 25.]]), array([[0, 1, 2, 3],
[1, 0, 2, 3],
[2, 1, 0, 3],
[3, 4, 5, 0],
[4, 3, 5, 0],
[5, 4, 3, 0]]))