I have the following data.table
x = structure(list(f1 = 1:3, f2 = 3:5), .Names = c(\"f1\", \"f2\"), row.names = c(NA, -3L), class = c(\"data.tab
The best way is to write a vectorized function, but if you can't, then perhaps this will do:
x[, func.text(f1, f2), by = seq_len(nrow(x))]
The most elegant way I've found is with mapply
:
x[, value := mapply(func.text, f1, f2)]
x
# f1 f2 value
# 1: 1 3 21.08554
# 2: 2 4 56.59815
# 3: 3 5 151.4132
Or with the purrr
package:
x[, value := purrr::pmap(.(f1, f2), func.text)]
We can define rows with .I
function.
dt_iris <- data.table(iris)
dt_iris[, ..I := .I]
## Let's define some function
some_fun <- function(dtX) {
print('hello')
return(dtX[, Sepal.Length / Sepal.Width])
}
## by row
dt_iris[, some_fun(.SD), by = ..I] # or simply: dt_iris[, some_fun(.SD), by = .I]
## vectorized calculation
some_fun(dt_iris)