Filter Spark DataFrame based on another DataFrame that specifies denylist criteria

后端 未结 2 763
南方客
南方客 2020-12-01 05:25

I have a largeDataFrame (multiple columns and billions of rows) and a smallDataFrame (single column and 10,000 rows).

I\'d like to filter a

相关标签:
2条回答
  • 2020-12-01 05:48

    You'll need to use a left_anti join in this case.

    The left anti join is the opposite of a left semi join.

    It filters out data from the right table in the left table according to a given key :

    largeDataFrame
       .join(smallDataFrame, Seq("some_identifier"),"left_anti")
       .show
    // +---------------+----------+
    // |some_identifier|first_name|
    // +---------------+----------+
    // |            222|      mary|
    // |            111|       bob|
    // +---------------+----------+
    
    0 讨论(0)
  • 2020-12-01 06:09

    A version in pure Spark SQL (and using PySpark as an example, but with small changes same is applicable for Scala API):

    def string_to_dataframe (df_name, csv_string):
        rdd = spark.sparkContext.parallelize(csv_string.split("\n"))
        df = spark.read.option('header', 'true').option('inferSchema','true').csv(rdd)
        df.registerTempTable(df_name)
    
    string_to_dataframe("largeDataFrame", '''some_identifier,first_name
    111,bob
    123,phil
    222,mary
    456,sue''')
    
    string_to_dataframe("smallDataFrame", '''some_identifier
    123
    456
    ''')
    
    anti_join_df = spark.sql("""
        select * 
        from largeDataFrame L
        where NOT EXISTS (
                select 1 from smallDataFrame S
                WHERE L.some_identifier = S.some_identifier
            )
    """)
    
    print(anti_join_df.take(10))
    
    anti_join_df.explain()
    
    

    will output expectedly mary and bob:

    [Row(some_identifier=222, first_name='mary'),
    Row(some_identifier=111, first_name='bob')]

    and also Physical Execution Plan will show it is using

    == Physical Plan ==
    SortMergeJoin [some_identifier#252], [some_identifier#264], LeftAnti
    :- *(1) Sort [some_identifier#252 ASC NULLS FIRST], false, 0
    :  +- Exchange hashpartitioning(some_identifier#252, 200)
    :     +- Scan ExistingRDD[some_identifier#252,first_name#253]
    +- *(3) Sort [some_identifier#264 ASC NULLS FIRST], false, 0
       +- Exchange hashpartitioning(some_identifier#264, 200)
          +- *(2) Project [some_identifier#264]
             +- Scan ExistingRDD[some_identifier#264]
    

    Notice Sort Merge Join is more efficient for joining / anti-joining data sets that are approximately of the same size. Since you have mentioned that that the small dataframe is smaller, we should make sure that Spark optimizer chooses Broadcast Hash Join which will be much more efficient in this scenario :

    I will change NOT EXISTS to NOT IN clause for this :

    anti_join_df = spark.sql("""
        select * 
        from largeDataFrame L
        where L.some_identifier NOT IN (
                select S.some_identifier
                from smallDataFrame S
            )
    """)
    
    anti_join_df.explain()
    

    Let's see what it gave us :

    == Physical Plan ==
    BroadcastNestedLoopJoin BuildRight, LeftAnti, ((some_identifier#302 = some_identifier#314) || isnull((some_identifier#302 = some_identifier#314)))
    :- Scan ExistingRDD[some_identifier#302,first_name#303]
    +- BroadcastExchange IdentityBroadcastMode
       +- Scan ExistingRDD[some_identifier#314]
    

    Notice that Spark Optimizer actually chose Broadcast Nested Loop Join and not Broadcast Hash Join. The former is okay since we have just two records to exclude from the left side.

    Also notice that both execution plans do have LeftAnti so it is similar to @eliasah answer, but is implemented using pure SQL. Plus it shows that you can have more control over physical execution plan.

    PS. Also keep in mind that if the right dataframe is much smaller than the left-side dataframe but is bigger than just a few records, you do want to have Broadcast Hash Join and not Broadcast Nested Loop Join nor Sort Merge Join. If this doesn't happen, you may need to tune up spark.sql.autoBroadcastJoinThreshold as it defaults to 10Mb, but it has to be bigger than the size of the "smallDataFrame".

    0 讨论(0)
提交回复
热议问题