I have a set of products that must be scheduled. There are P products each indexed from 1 to P. Each product can be scheduled into a time period 0 to T. I need to construct
Here's a simple permutation extension method for C# 7 (value tuples and inner methods). It's derived from @AndrasVaas's answer, but uses only a single level of laziness (preventing bugs due to mutating items over time), loses the IComparer
feature (I didn't need it), and is a fair bit shorter.
public static class PermutationExtensions
{
/// <summary>
/// Generates permutations.
/// </summary>
/// <typeparam name="T">Type of items to permute.</typeparam>
/// <param name="items">Array of items. Will not be modified.</param>
/// <returns>Permutations of input items.</returns>
public static IEnumerable<T[]> Permute<T>(this T[] items)
{
T[] ApplyTransform(T[] values, (int First, int Second)[] tx)
{
var permutation = new T[values.Length];
for (var i = 0; i < tx.Length; i++)
permutation[i] = values[tx[i].Second];
return permutation;
}
void Swap<U>(ref U x, ref U y)
{
var tmp = x;
x = y;
y = tmp;
}
var length = items.Length;
// Build identity transform
var transform = new(int First, int Second)[length];
for (var i = 0; i < length; i++)
transform[i] = (i, i);
yield return ApplyTransform(items, transform);
while (true)
{
// Ref: E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1997
// Find the largest partition from the back that is in decreasing (non-increasing) order
var decreasingpart = length - 2;
while (decreasingpart >= 0 && transform[decreasingpart].First >= transform[decreasingpart + 1].First)
--decreasingpart;
// The whole sequence is in decreasing order, finished
if (decreasingpart < 0)
yield break;
// Find the smallest element in the decreasing partition that is
// greater than (or equal to) the item in front of the decreasing partition
var greater = length - 1;
while (greater > decreasingpart && transform[decreasingpart].First >= transform[greater].First)
greater--;
// Swap the two
Swap(ref transform[decreasingpart], ref transform[greater]);
// Reverse the decreasing partition
Array.Reverse(transform, decreasingpart + 1, length - decreasingpart - 1);
yield return ApplyTransform(items, transform);
}
}
}
If I understand the question: you are looking for all sequences of integers of length P, where each integer in the set is between 0 and T, and the sequence is monotone nondecreasing. Is that correct?
Writing such a program using iterator blocks is straightforward:
using System;
using System.Collections.Generic;
using System.Linq;
static class Program
{
static IEnumerable<T> Prepend<T>(T first, IEnumerable<T> rest)
{
yield return first;
foreach (var item in rest)
yield return item;
}
static IEnumerable<IEnumerable<int>> M(int p, int t1, int t2)
{
if (p == 0)
yield return Enumerable.Empty<int>();
else
for (int first = t1; first <= t2; ++first)
foreach (var rest in M(p - 1, first, t2))
yield return Prepend(first, rest);
}
public static void Main()
{
foreach (var sequence in M(4, 0, 2))
Console.WriteLine(string.Join(", ", sequence));
}
}
Which produces the desired output: nondecreasing sequences of length 4 drawn from 0 through 2.
0, 0, 0, 0
0, 0, 0, 1
0, 0, 0, 2
0, 0, 1, 1
0, 0, 1, 2
0, 0, 2, 2
0, 1, 1, 1
0, 1, 1, 2
0, 1, 2, 2
0, 2, 2, 2
1, 1, 1, 1
1, 1, 1, 2
1, 1, 2, 2
1, 2, 2, 2
2, 2, 2, 2
Note that the usage of multiply-nested iterators for concatenation is not very efficient, but who cares? You already are generating an exponential number of sequences, so the fact that there's a polynomial inefficiency in the generator is basically irrelevant.
The method M generates all monotone nondecreasing sequences of integers of length p where the integers are between t1 and t2. It does so recursively, using a straightforward recursion. The base case is that there is exactly one sequence of length zero, namely the empty sequence. The recursive case is that in order to compute, say P = 3, t1 = 0, t2 = 2, you compute:
- all sequences starting with 0 followed by sequences of length 2 drawn from 0 to 2.
- all sequences starting with 1 followed by sequences of length 2 drawn from 1 to 2.
- all sequences starting with 2 followed by sequences of length 2 drawn from 2 to 2.
And that's the result.
Alternatively, you could use query comprehensions instead of iterator blocks in the main recursive method:
static IEnumerable<T> Singleton<T>(T first)
{
yield return first;
}
static IEnumerable<IEnumerable<int>> M(int p, int t1, int t2)
{
return p == 0 ?
Singleton(Enumerable.Empty<int>()) :
from first in Enumerable.Range(t1, t2 - t1 + 1)
from rest in M(p - 1, first, t2)
select Prepend(first, rest);
}
That does basically the same thing; it just moves the loops into the SelectMany method.