I\'ve trained a sentiment classifier model using Keras library by following the below steps(broadly).
The most common way is to use either pickle or joblib. Here you have an example on how to use pickle
in order to save Tokenizer
:
import pickle
# saving
with open('tokenizer.pickle', 'wb') as handle:
pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
# loading
with open('tokenizer.pickle', 'rb') as handle:
tokenizer = pickle.load(handle)
The accepted answer clearly demonstrates how to save the tokenizer. The following is a comment on the problem of (generally) scoring after fitting or saving. Suppose that a list texts
is comprised of two lists Train_text
and Test_text
, where the set of tokens in Test_text
is a subset of the set of tokens in Train_text
(an optimistic assumption). Then fit_on_texts(Train_text)
gives different results for texts_to_sequences(Test_text)
as compared with first calling fit_on_texts(texts)
and then text_to_sequences(Test_text)
.
Concrete Example:
from keras.preprocessing.text import Tokenizer
docs = ["A heart that",
"full up like",
"a landfill",
"no surprises",
"and no alarms"
"a job that slowly"
"Bruises that",
"You look so",
"tired happy",
"no alarms",
"and no surprises"]
docs_train = docs[:7]
docs_test = docs[7:]
# EXPERIMENT 1: FIT TOKENIZER ONLY ON TRAIN
T_1 = Tokenizer()
T_1.fit_on_texts(docs_train) # only train set
encoded_train_1 = T_1.texts_to_sequences(docs_train)
encoded_test_1 = T_1.texts_to_sequences(docs_test)
print("result for test 1:\n%s" %(encoded_test_1,))
# EXPERIMENT 2: FIT TOKENIZER ON BOTH TRAIN + TEST
T_2 = Tokenizer()
T_2.fit_on_texts(docs) # both train and test set
encoded_train_2 = T_2.texts_to_sequences(docs_train)
encoded_test_2 = T_2.texts_to_sequences(docs_test)
print("result for test 2:\n%s" %(encoded_test_2,))
Results:
result for test 1:
[[3], [10, 3, 9]]
result for test 2:
[[1, 19], [5, 1, 4]]
Of course, if the above optimistic assumption is not satisfied and the set of tokens in Test_text is disjoint from that of Train_test, then test 1 results in a list of empty brackets [].
I've created the issue https://github.com/keras-team/keras/issues/9289 in the keras Repo. Until the API is changed, the issue has a link to a gist that has code to demonstrate how to save and restore a tokenizer without having the original documents the tokenizer was fit on. I prefer to store all my model information in a JSON file (because reasons, but mainly mixed JS/Python environment), and this will allow for that, even with sort_keys=True
Tokenizer class has a function to save date into JSON format:
tokenizer_json = tokenizer.to_json()
with io.open('tokenizer.json', 'w', encoding='utf-8') as f:
f.write(json.dumps(tokenizer_json, ensure_ascii=False))
The data can be loaded using tokenizer_from_json
function from keras_preprocessing.text
:
with open('tokenizer.json') as f:
data = json.load(f)
tokenizer = tokenizer_from_json(data)