I'm surprised by the religous tone on both sides.
Profiling is great, and certainly is a more refined and precise when you can do it. Sometimes you can't, and it's nice to have a trusty back-up. The pause technique is like the manual screwdriver you use when your power tool is too far away or the bateries have run-down.
Here is a short true story. An application (kind of a batch proccessing task) had been running fine in production for six months, suddenly the operators are calling developers because it is going "too slow". They aren't going to let us attach a sampling profiler in production! You have to work with the tools already installed. Without stopping the production process, just using Process Explorer, (which operators had already installed on the machine) we could see a snapshot of a thread's stack. You can glance at the top of the stack, dismiss it with the enter key and get another snapshot with another mouse click. You can easily get a sample every second or so.
It doesn't take long to see if the top of the stack is most often in the database client library DLL (waiting on the database), or in another system DLL (waiting for a system operation), or actually in some method of the application itself. In this case, if I remember right, we quickly noticed that 8 times out of 10 the application was in a system DLL file call reading or writing a network file. Sure enough recent "upgrades" had changed the performance characteristics of a file share. Without a quick and dirty and (system administrator sanctioned) approach to see what the application was doing in production, we would have spent far more time trying to measure the issue, than correcting the issue.
On the other hand, when performance requirements move beyond "good enough" to really pushing the envelope, a profiler becomes essential so that you can try to shave cycles from all of your closely-tied top-ten or twenty hot spots. Even if you are just trying to hold to a moderate performance requirement durring a project, when you can get the right tools lined-up to help you measure and test, and even get them integrated into your automated test process it can be fantasticly helpful.
But when the power is out (so to speak) and the batteries are dead, it's nice know how to use that manual screwdriver.
So the direct answer: Know what you can learn from halting the program, but don't be afraid of precision tools either. Most importantly know which jobs call for which tools.