I might have an array that looks like the following:
[1, 4, 2, 2, 6, 24, 15, 2, 60, 15, 6]
Or, reall
Here is a solution that
NS
typesO(n)
extension Array where Element: Hashable {
var uniqueValues: [Element] {
var allowed = Set(self)
return compactMap { allowed.remove($0) }
}
}
Slightly more succinct syntax version of Daniel Krom's Swift 2 answer, using a trailing closure and shorthand argument name, which appears to be based on Airspeed Velocity's original answer:
func uniq<S: SequenceType, E: Hashable where E == S.Generator.Element>(source: S) -> [E] {
var seen = [E: Bool]()
return source.filter { seen.updateValue(true, forKey: $0) == nil }
}
Example of implementing a custom type that can be used with uniq(_:)
(which must conform to Hashable
, and thus Equatable
, because Hashable
extends Equatable
):
func ==(lhs: SomeCustomType, rhs: SomeCustomType) -> Bool {
return lhs.id == rhs.id // && lhs.someOtherEquatableProperty == rhs.someOtherEquatableProperty
}
struct SomeCustomType {
let id: Int
// ...
}
extension SomeCustomType: Hashable {
var hashValue: Int {
return id
}
}
In the above code...
id
, as used in the overload of ==
, could be any Equatable
type (or method that returns an Equatable
type, e.g., someMethodThatReturnsAnEquatableType()
). The commented-out code demonstrates extending the check for equality, where someOtherEquatableProperty
is another property of an Equatable
type (but could also be a method that returns an Equatable
type).
id
, as used in the hashValue
computed property (required to conform to Hashable
), could be any Hashable
(and thus Equatable
) property (or method that returns a Hashable
type).
Example of using uniq(_:)
:
var someCustomTypes = [SomeCustomType(id: 1), SomeCustomType(id: 2), SomeCustomType(id: 3), SomeCustomType(id: 1)]
print(someCustomTypes.count) // 4
someCustomTypes = uniq(someCustomTypes)
print(someCustomTypes.count) // 3
This is just a very simple and convenient implementation. A computed property in an extension of an Array that has equatable elements.
extension Array where Element: Equatable {
/// Array containing only _unique_ elements.
var unique: [Element] {
var result: [Element] = []
for element in self {
if !result.contains(element) {
result.append(element)
}
}
return result
}
}
func removeDublicate (ab: [Int]) -> [Int] {
var answer1:[Int] = []
for i in ab {
if !answer1.contains(i) {
answer1.append(i)
}}
return answer1
}
Usage:
let f = removeDublicate(ab: [1,2,2])
print(f)
here I've done some O(n) solution for objects. Not few-lines solution, but...
struct DistinctWrapper <T>: Hashable {
var underlyingObject: T
var distinctAttribute: String
var hashValue: Int {
return distinctAttribute.hashValue
}
}
func distinct<S : SequenceType, T where S.Generator.Element == T>(source: S,
distinctAttribute: (T) -> String,
resolution: (T, T) -> T) -> [T] {
let wrappers: [DistinctWrapper<T>] = source.map({
return DistinctWrapper(underlyingObject: $0, distinctAttribute: distinctAttribute($0))
})
var added = Set<DistinctWrapper<T>>()
for wrapper in wrappers {
if let indexOfExisting = added.indexOf(wrapper) {
let old = added[indexOfExisting]
let winner = resolution(old.underlyingObject, wrapper.underlyingObject)
added.insert(DistinctWrapper(underlyingObject: winner, distinctAttribute: distinctAttribute(winner)))
} else {
added.insert(wrapper)
}
}
return Array(added).map( { return $0.underlyingObject } )
}
func == <T>(lhs: DistinctWrapper<T>, rhs: DistinctWrapper<T>) -> Bool {
return lhs.hashValue == rhs.hashValue
}
// tests
// case : perhaps we want to get distinct addressbook list which may contain duplicated contacts like Irma and Irma Burgess with same phone numbers
// solution : definitely we want to exclude Irma and keep Irma Burgess
class Person {
var name: String
var phoneNumber: String
init(_ name: String, _ phoneNumber: String) {
self.name = name
self.phoneNumber = phoneNumber
}
}
let persons: [Person] = [Person("Irma Burgess", "11-22-33"), Person("Lester Davidson", "44-66-22"), Person("Irma", "11-22-33")]
let distinctPersons = distinct(persons,
distinctAttribute: { (person: Person) -> String in
return person.phoneNumber
},
resolution:
{ (p1, p2) -> Person in
return p1.name.characters.count > p2.name.characters.count ? p1 : p2
}
)
// distinctPersons contains ("Irma Burgess", "11-22-33") and ("Lester Davidson", "44-66-22")
Inspired by https://www.swiftbysundell.com/posts/the-power-of-key-paths-in-swift, we can declare a more powerful tool that is able to filter for unicity on any keyPath. Thanks to Alexander comments on various answers regarding complexity, the below solutions should be near optimal.
We extend with a function that is able to filter for unicity on any keyPath:
extension RangeReplaceableCollection {
/// Returns a collection containing, in order, the first instances of
/// elements of the sequence that compare equally for the keyPath.
func unique<T: Hashable>(for keyPath: KeyPath<Element, T>) -> Self {
var unique = Set<T>()
return filter { unique.insert($0[keyPath: keyPath]).inserted }
}
}
Note: in the case where your object doesn't conform to RangeReplaceableCollection, but does conform to Sequence, you can have this additional extension, but the return type will always be an Array:
extension Sequence {
/// Returns an array containing, in order, the first instances of
/// elements of the sequence that compare equally for the keyPath.
func unique<T: Hashable>(for keyPath: KeyPath<Element, T>) -> [Element] {
var unique = Set<T>()
return filter { unique.insert($0[keyPath: keyPath]).inserted }
}
}
If we want unicity for elements themselves, as in the question, we use the keyPath \.self
:
let a = [1, 4, 2, 2, 6, 24, 15, 2, 60, 15, 6]
let b = a.unique(for: \.self)
/* b is [1, 4, 2, 6, 24, 15, 60] */
If we want unicity for something else (like for the id
of a collection of objects) then we use the keyPath of our choice:
let a = [CGPoint(x: 1, y: 1), CGPoint(x: 2, y: 1), CGPoint(x: 1, y: 2)]
let b = a.unique(for: \.y)
/* b is [{x 1 y 1}, {x 1 y 2}] */
We extend with a mutating function that is able to filter for unicity on any keyPath:
extension RangeReplaceableCollection {
/// Keeps only, in order, the first instances of
/// elements of the collection that compare equally for the keyPath.
mutating func uniqueInPlace<T: Hashable>(for keyPath: KeyPath<Element, T>) {
var unique = Set<T>()
removeAll { !unique.insert($0[keyPath: keyPath]).inserted }
}
}
If we want unicity for elements themselves, as in the question, we use the keyPath \.self
:
var a = [1, 4, 2, 2, 6, 24, 15, 2, 60, 15, 6]
a.uniqueInPlace(for: \.self)
/* a is [1, 4, 2, 6, 24, 15, 60] */
If we want unicity for something else (like for the id
of a collection of objects) then we use the keyPath of our choice:
var a = [CGPoint(x: 1, y: 1), CGPoint(x: 2, y: 1), CGPoint(x: 1, y: 2)]
a.uniqueInPlace(for: \.y)
/* a is [{x 1 y 1}, {x 1 y 2}] */