I have data frames which contain e.g.:
"vendor a::ProductA"
"vendor b::ProductA"
"vendor a::Productb"
I need to
If it is in a specific column (having name: column) of a data frame (having name: dataframe), you can also use
dataframe.column.str.replace("(::).*","")
It gives you the below result
column new_column
0 vendor a::ProductA vendor a
1 vendor b::ProductA vendor b
2 vendor a::Productb vendor a
By using this you need not specify any position, as it gets rid of anything present after '::'
I guess this might come oh help,Good luck!
there is your function:
def do_it(str):
integer=0
while integer<len(str):
if str[integer]==':' :
if str[integer+1]==':' :
str=str.split(':')[0]
break;
integer=integer+1
return (str)
pass the original string in there. And get the new trimmed string.
You can use str.replace(":", " ")
to remove the "::"
.
To split, you need to specify the character you want to split into: str.split(" ")
The trim function is called strip in python: str.strip()
Also, you can do str[:7]
to get just "vendor x"
in your strings.
Good luck
You can use pandas.Series.str.split
just like you would use split
normally. Just split on the string '::'
, and index the list that's created from the split
method:
>>> df = pd.DataFrame({'text': ["vendor a::ProductA", "vendor b::ProductA", "vendor a::Productb"]})
>>> df
text
0 vendor a::ProductA
1 vendor b::ProductA
2 vendor a::Productb
>>> df['text_new'] = df['text'].str.split('::').str[0]
>>> df
text text_new
0 vendor a::ProductA vendor a
1 vendor b::ProductA vendor b
2 vendor a::Productb vendor a
Here's a non-pandas solution:
>>> df['text_new1'] = [x.split('::')[0] for x in df['text']]
>>> df
text text_new text_new1
0 vendor a::ProductA vendor a vendor a
1 vendor b::ProductA vendor b vendor b
2 vendor a::Productb vendor a vendor a
Edit: Here's the step-by-step explanation of what's happening in pandas
above:
# Select the pandas.Series object you want
>>> df['text']
0 vendor a::ProductA
1 vendor b::ProductA
2 vendor a::Productb
Name: text, dtype: object
# using pandas.Series.str allows us to implement "normal" string methods
# (like split) on a Series
>>> df['text'].str
<pandas.core.strings.StringMethods object at 0x110af4e48>
# Now we can use the split method to split on our '::' string. You'll see that
# a Series of lists is returned (just like what you'd see outside of pandas)
>>> df['text'].str.split('::')
0 [vendor a, ProductA]
1 [vendor b, ProductA]
2 [vendor a, Productb]
Name: text, dtype: object
# using the pandas.Series.str method, again, we will be able to index through
# the lists returned in the previous step
>>> df['text'].str.split('::').str
<pandas.core.strings.StringMethods object at 0x110b254a8>
# now we can grab the first item in each list above for our desired output
>>> df['text'].str.split('::').str[0]
0 vendor a
1 vendor b
2 vendor a
Name: text, dtype: object
I would suggest checking out the pandas.Series.str docs, or, better yet, Working with Text Data in pandas.