I want to be better about knowing when I should cast. What are the implicit type conversion rules in C++ when adding, multiplying, etc. For example,
int + fl
Caveat!
The conversions occur from left to right.
Try this:
int i = 3, j = 2;
double k = 33;
cout << k * j / i << endl; // prints 22
cout << j / i * k << endl; // prints 0
My solution to the problem got WA(wrong answer), then i changed one of int
to long long int
and it gave AC(accept). Previously, I was trying to do long long int += int * int
, and after I rectify it to long long int += long long int * int
. Googling I came up with,
Conditions for Type Conversion:
Conditions Met ---> Conversion
Either operand is of type long double. ---> Other operand is converted to type long double.
Preceding condition not met and either operand is of type double. ---> Other operand is converted to type double.
Preceding conditions not met and either operand is of type float. ---> Other operand is converted to type float.
Preceding conditions not met (none of the operands are of floating types). ---> Integral promotions are performed on the operands as follows:
Integer types smaller than int are promoted when an operation is performed on them. If all values of the original type can be represented as an int, the value of the smaller type is converted to an int; otherwise, it is converted to an unsigned int. Integer promotions are applied as part of the usual arithmetic conversions to certain argument expressions; operands of the unary +, -, and ~ operators; and operands of the shift operators.
Integer Conversion Rank:
long long int
shall be greater than the rank of long int
, which shall be greater than the rank of int
, which shall be greater than the rank of short int
, which shall be greater than the rank of signed char
.char
shall equal the rank of signed char
and unsigned char
.Usual Arithmetic Conversions:
If you exclude the unsigned types, there is an ordered hierarchy: signed char, short, int, long, long long, float, double, long double. First, anything coming before int in the above will be converted to int. Then, in a binary operation, the lower ranked type will be converted to the higher, and the results will be the type of the higher. (You'll note that, from the hierarchy, anytime a floating point and an integral type are involved, the integral type will be converted to the floating point type.)
Unsigned complicates things a bit: it perturbs the ranking, and parts of the ranking become implementation defined. Because of this, it's best to not mix signed and unsigned in the same expression. (Most C++ experts seem to avoid unsigned unless bitwise operations are involved. That is, at least, what Stroustrup recommends.)
This answer is directed in large part at a comment made by @RafałDowgird:
"The minimum size of operations is int." - This would be very strange (what about architectures that efficiently support char/short operations?) Is this really in the C++ spec?
Keep in mind that the C++ standard has the all-important "as-if" rule. See section 1.8: Program Execution:
3) This provision is sometimes called the "as-if" rule, because an implementation is free to disregard any requirement of the Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable behavior of the program.
The compiler cannot set an int
to be 8 bits in size, even if it were the fastest, since the standard mandates a 16-bit minimum int
.
Therefore, in the case of a theoretical computer with super-fast 8-bit operations, the implicit promotion to int
for arithmetic could matter. However, for many operations, you cannot tell if the compiler actually did the operations in the precision of an int
and then converted to a char
to store in your variable, or if the operations were done in char all along.
For example, consider unsigned char = unsigned char + unsigned char + unsigned char
, where addition would overflow (let's assume a value of 200 for each). If you promoted to int
, you would get 600, which would then be implicitly down cast into an unsigned char
, which would wrap modulo 256, thus giving a final result of 88. If you did no such promotions,you'd have to wrap between the first two additions, which would reduce the problem from 200 + 200 + 200
to 144 + 200
, which is 344, which reduces to 88. In other words, the program does not know the difference, so the compiler is free to ignore the mandate to perform intermediate operations in int
if the operands have a lower ranking than int
.
This is true in general of addition, subtraction, and multiplication. It is not true in general for division or modulus.
The type of the expression, when not both parts are of the same type, will be converted to the biggest of both. The problem here is to understand which one is bigger than the other (it does not have anything to do with size in bytes).
In expressions in which a real number and an integer number are involved, the integer will be promoted to real number. For example, in int + float, the type of the expression is float.
The other difference are related to the capability of the type. For example, an expression involving an int and a long int will result of type long int.
Arithmetic operations involving float
results in float
.
int + float = float
int * float = float
float * int = float
int / float = float
float / int = float
int / int = int
For more detail answer. Look at what the section §5/9 from the C++ Standard says
Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:
— If either operand is of type long double, the other shall be converted to long double.
— Otherwise, if either operand is double, the other shall be converted to double.
— Otherwise, if either operand is float, the other shall be converted to float.
— Otherwise, the integral promotions (4.5) shall be performed on both operands.54)
— Then, if either operand is unsigned long the other shall be converted to unsigned long.
— Otherwise, if one operand is a long int and the other unsigned int, then if a long int can represent all the values of an unsigned int, the unsigned int shall be converted to a long int; otherwise both operands shall be converted to unsigned long int.
— Otherwise, if either operand is long, the other shall be converted to long.
— Otherwise, if either operand is unsigned, the other shall be converted to unsigned.
[Note: otherwise, the only remaining case is that both operands are int ]