I haven\'t been able to find an answer to this question, largely because googling anything with a standalone letter (like \"I\") causes issues.
What does the \"I\"
I
isolates or insulates the contents of I( ... )
from the gaze of R's formula parsing code. It allows the standard R operators to work as they would if you used them outside of a formula, rather than being treated as special formula operators.
For example:
y ~ x + x^2
would, to R, mean "give me:
x
= the main effect of x
, andx^2
= the main effect and the second order interaction of x
",not the intended x
plus x
-squared:
> model.frame( y ~ x + x^2, data = data.frame(x = rnorm(5), y = rnorm(5)))
y x
1 -1.4355144 -1.85374045
2 0.3620872 -0.07794607
3 -1.7590868 0.96856634
4 -0.3245440 0.18492596
5 -0.6515630 -1.37994358
This is because ^
is a special operator in a formula, as described in ?formula
. You end up only including x
in the model frame because the main effect of x
is already included from the x
term in the formula, and there is nothing to cross x
with to get the second-order interactions in the x^2
term.
To get the usual operator, you need to use I()
to isolate the call from the formula code:
> model.frame( y ~ x + I(x^2), data = data.frame(x = rnorm(5), y = rnorm(5)))
y x I(x^2)
1 -0.02881534 1.0865514 1.180593....
2 0.23252515 -0.7625449 0.581474....
3 -0.30120868 -0.8286625 0.686681....
4 -0.67761458 0.8344739 0.696346....
5 0.65522764 -0.9676520 0.936350....
(that last column is correct, it just looks odd because it is of class AsIs
.)
In your example, -
when used in a formula would indicate removal of a term from the model, where you wanted -
to have it's usual binary operator meaning of subtraction:
> model.frame( y ~ x - mean(x), data = data.frame(x = rnorm(5), y = rnorm(5)))
Error in model.frame.default(y ~ x - mean(x), data = data.frame(x = rnorm(5), :
variable lengths differ (found for 'mean(x)')
This fails for reason that mean(x)
is a length 1 vector and model.frame()
quite rightly tells you this doesn't match the length of the other variables. A way round this is I()
:
> model.frame( y ~ I(x - mean(x)), data = data.frame(x = rnorm(5), y = rnorm(5)))
y I(x - mean(x))
1 1.1727063 1.142200....
2 -1.4798270 -0.66914....
3 -0.4303878 -0.28716....
4 -1.0516386 0.542774....
5 1.5225863 -0.72865....
Hence, where you want to use an operator that has special meaning in a formula, but you need its non-formula meaning, you need to wrap the elements of the operation in I( )
.
Read ?formula
for more on the special operators, and ?I
for more details on the function itself and its other main use-case within data frames (which is where the AsIs
bit originates from, if you are interested).
From the docs:
Function I has two main uses.
To address this point:
df1 <- data.frame(stringi = I("dog"))
df2 <- data.frame(stringi = "dog")
str(df1)
str(df2)
To address this point:
lm(mpg ~ disp + drat, mtcars)
lm(mpg ~ I(disp + drat), mtcars)
Second line. "Creates a new predictor" that is the literal sum of disp + drat