I\'m sorry for a redundant question. However, I\'ve found many solutions to my problem but none of them are very well explained. I\'m hoping that it will be made clear, he
Here's a different approach - encapsulation; so your code could be as simple as:
Forker p = new Forker();
foreach (var obj in collection)
{
var tmp = obj;
p.Fork(delegate { DoSomeWork(tmp); });
}
p.Join();
Where the Forker
class is given below (I got bored on the train ;-p)... again, this avoids OS objects, but wraps things up quite neatly (IMO):
using System;
using System.Threading;
/// <summary>Event arguments representing the completion of a parallel action.</summary>
public class ParallelEventArgs : EventArgs
{
private readonly object state;
private readonly Exception exception;
internal ParallelEventArgs(object state, Exception exception)
{
this.state = state;
this.exception = exception;
}
/// <summary>The opaque state object that identifies the action (null otherwise).</summary>
public object State { get { return state; } }
/// <summary>The exception thrown by the parallel action, or null if it completed without exception.</summary>
public Exception Exception { get { return exception; } }
}
/// <summary>Provides a caller-friendly wrapper around parallel actions.</summary>
public sealed class Forker
{
int running;
private readonly object joinLock = new object(), eventLock = new object();
/// <summary>Raised when all operations have completed.</summary>
public event EventHandler AllComplete
{
add { lock (eventLock) { allComplete += value; } }
remove { lock (eventLock) { allComplete -= value; } }
}
private EventHandler allComplete;
/// <summary>Raised when each operation completes.</summary>
public event EventHandler<ParallelEventArgs> ItemComplete
{
add { lock (eventLock) { itemComplete += value; } }
remove { lock (eventLock) { itemComplete -= value; } }
}
private EventHandler<ParallelEventArgs> itemComplete;
private void OnItemComplete(object state, Exception exception)
{
EventHandler<ParallelEventArgs> itemHandler = itemComplete; // don't need to lock
if (itemHandler != null) itemHandler(this, new ParallelEventArgs(state, exception));
if (Interlocked.Decrement(ref running) == 0)
{
EventHandler allHandler = allComplete; // don't need to lock
if (allHandler != null) allHandler(this, EventArgs.Empty);
lock (joinLock)
{
Monitor.PulseAll(joinLock);
}
}
}
/// <summary>Adds a callback to invoke when each operation completes.</summary>
/// <returns>Current instance (for fluent API).</returns>
public Forker OnItemComplete(EventHandler<ParallelEventArgs> handler)
{
if (handler == null) throw new ArgumentNullException("handler");
ItemComplete += handler;
return this;
}
/// <summary>Adds a callback to invoke when all operations are complete.</summary>
/// <returns>Current instance (for fluent API).</returns>
public Forker OnAllComplete(EventHandler handler)
{
if (handler == null) throw new ArgumentNullException("handler");
AllComplete += handler;
return this;
}
/// <summary>Waits for all operations to complete.</summary>
public void Join()
{
Join(-1);
}
/// <summary>Waits (with timeout) for all operations to complete.</summary>
/// <returns>Whether all operations had completed before the timeout.</returns>
public bool Join(int millisecondsTimeout)
{
lock (joinLock)
{
if (CountRunning() == 0) return true;
Thread.SpinWait(1); // try our luck...
return (CountRunning() == 0) ||
Monitor.Wait(joinLock, millisecondsTimeout);
}
}
/// <summary>Indicates the number of incomplete operations.</summary>
/// <returns>The number of incomplete operations.</returns>
public int CountRunning()
{
return Interlocked.CompareExchange(ref running, 0, 0);
}
/// <summary>Enqueues an operation.</summary>
/// <param name="action">The operation to perform.</param>
/// <returns>The current instance (for fluent API).</returns>
public Forker Fork(ThreadStart action) { return Fork(action, null); }
/// <summary>Enqueues an operation.</summary>
/// <param name="action">The operation to perform.</param>
/// <param name="state">An opaque object, allowing the caller to identify operations.</param>
/// <returns>The current instance (for fluent API).</returns>
public Forker Fork(ThreadStart action, object state)
{
if (action == null) throw new ArgumentNullException("action");
Interlocked.Increment(ref running);
ThreadPool.QueueUserWorkItem(delegate
{
Exception exception = null;
try { action(); }
catch (Exception ex) { exception = ex;}
OnItemComplete(state, exception);
});
return this;
}
}
First, how long do the workers execute? pool threads should generally be used for short-lived tasks - if they are going to run for a while, consider manual threads.
Re the problem; do you actually need to block the main thread? Can you use a callback instead? If so, something like:
int running = 1; // start at 1 to prevent multiple callbacks if
// tasks finish faster than they are started
Action endOfThread = delegate {
if(Interlocked.Decrement(ref running) == 0) {
// ****run callback method****
}
};
foreach(var o in collection)
{
var tmp = o; // avoid "capture" issue
Interlocked.Increment(ref running);
ThreadPool.QueueUserWorkItem(delegate {
DoSomeWork(tmp); // [A] should handle exceptions internally
endOfThread();
});
}
endOfThread(); // opposite of "start at 1"
This is a fairly lightweight (no OS primitives) way of tracking the workers.
If you need to block, you can do the same using a Monitor
(again, avoiding an OS object):
object syncLock = new object();
int running = 1;
Action endOfThread = delegate {
if (Interlocked.Decrement(ref running) == 0) {
lock (syncLock) {
Monitor.Pulse(syncLock);
}
}
};
lock (syncLock) {
foreach (var o in collection) {
var tmp = o; // avoid "capture" issue
ThreadPool.QueueUserWorkItem(delegate
{
DoSomeWork(tmp); // [A] should handle exceptions internally
endOfThread();
});
}
endOfThread();
Monitor.Wait(syncLock);
}
Console.WriteLine("all done");
Try using CountdownEvent
// code before the threads start
CountdownEvent countdown = new CountdownEvent(collection.Length);
foreach (var o in collection)
{
ThreadPool.QueueUserWorkItem(delegate
{
// do something with the worker
Console.WriteLine("Thread Done!");
countdown.Signal();
});
}
countdown.Wait();
Console.WriteLine("Job Done!");
// resume the code here
The countdown would wait until all threads have finished execution.
Try this. The function takes in a list of Action delegates. It will add a ThreadPool worker entry for each item in the list. It will wait for every action to complete before returning.
public static void SpawnAndWait(IEnumerable<Action> actions)
{
var list = actions.ToList();
var handles = new ManualResetEvent[actions.Count()];
for (var i = 0; i < list.Count; i++)
{
handles[i] = new ManualResetEvent(false);
var currentAction = list[i];
var currentHandle = handles[i];
Action wrappedAction = () => { try { currentAction(); } finally { currentHandle.Set(); } };
ThreadPool.QueueUserWorkItem(x => wrappedAction());
}
WaitHandle.WaitAll(handles);
}
I have been using the new Parallel task library in CTP here:
Parallel.ForEach(collection, o =>
{
DoSomeWork(o);
});
Here is a solution using the CountdownEvent
class.
var complete = new CountdownEvent(1);
foreach (var o in collection)
{
var capture = o;
ThreadPool.QueueUserWorkItem((state) =>
{
try
{
DoSomething(capture);
}
finally
{
complete.Signal();
}
}, null);
}
complete.Signal();
complete.Wait();
Of course, if you have access to the CountdownEvent
class then you have the whole TPL to work with. The Parallel
class takes care of the waiting for you.
Parallel.ForEach(collection, o =>
{
DoSomething(o);
});