I think it should be a very simple problem, but I cannot find a solution or an effective keyword for search.
I just have this image.
I am not sure whether all your images are like this. But for this image, below is a simple python-opencv code to crop it.
first import libraries :
import cv2
import numpy as np
Read the image, convert it into grayscale, and make in binary image for threshold value of 1.
img = cv2.imread('sofwin.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
_,thresh = cv2.threshold(gray,1,255,cv2.THRESH_BINARY)
Now find contours in it. There will be only one object, so find bounding rectangle for it.
contours,hierarchy = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
x,y,w,h = cv2.boundingRect(cnt)
Now crop the image, and save it into another file.
crop = img[y:y+h,x:x+w]
cv2.imwrite('sofwinres.png',crop)
Below is the result :
I thought this answer is much more succinct:
def crop(image):
y_nonzero, x_nonzero, _ = np.nonzero(image)
return image[np.min(y_nonzero):np.max(y_nonzero), np.min(x_nonzero):np.max(x_nonzero)]
In case it helps anyone, I went with this tweak of @wordsforthewise's replacement for a PIL-based solution:
bw = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
rows, cols = bw.shape
non_empty_columns = np.where(bw.max(axis=0) > 0)[0]
non_empty_rows = np.where(bw.max(axis=1) > 0)[0]
cropBox = (min(non_empty_rows) * (1 - padding),
min(max(non_empty_rows) * (1 + padding), rows),
min(non_empty_columns) * (1 - padding),
min(max(non_empty_columns) * (1 + padding), cols))
return img[cropBox[0]:cropBox[1]+1, cropBox[2]:cropBox[3]+1 , :]
(It's a tweak in that the original code expects to crop away a white background rather than a black one.)
Python Version 3.6
Crop images and insert into a 'CropedImages' folder
import cv2
import os
arr = os.listdir('./OriginalImages')
for itr in arr:
img = cv2.imread(itr)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
_,thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY)
_, contours, _ = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
x,y,w,h = cv2.boundingRect(cnt)
crop = img[y:y+h,x:x+w]
cv2.imwrite('CropedImages/'+itr,crop)
Change the number 120 to other in 9th line and try for your images, It will work
How about a slick little recursive function?
import cv2
import numpy as np
def trim(frame):
#crop top
if not np.sum(frame[0]):
return trim(frame[1:])
#crop bottom
elif not np.sum(frame[-1]):
return trim(frame[:-2])
#crop left
elif not np.sum(frame[:,0]):
return trim(frame[:,1:])
#crop right
elif not np.sum(frame[:,-1]):
return trim(frame[:,:-2])
return frame
Load and threshold the image to ensure the dark areas are black:
img = cv2.imread("path_to_image.png")
thold = (img>120)*img
Then call the recursive function
trimmedImage = trim(thold)
import numpy as np
def autocrop(image, threshold=0):
"""Crops any edges below or equal to threshold
Crops blank image to 1x1.
Returns cropped image.
"""
if len(image.shape) == 3:
flatImage = np.max(image, 2)
else:
flatImage = image
assert len(flatImage.shape) == 2
rows = np.where(np.max(flatImage, 0) > threshold)[0]
if rows.size:
cols = np.where(np.max(flatImage, 1) > threshold)[0]
image = image[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1]
else:
image = image[:1, :1]
return image