How do I round datetime column to nearest quarter hour

后端 未结 4 1489
北海茫月
北海茫月 2020-12-01 00:59

I have loaded a data file into a Python pandas dataframe. I has a datetime column of the format 2015-07-18 13:53:33.280.

What I need to do is create a

相关标签:
4条回答
  • 2020-12-01 01:12

    Assuming that your series is made up of datetime objects, You need to use Series.apply . Example -

    import datetime
    df['<column>'] = df['<column>'].apply(lambda dt: datetime.datetime(dt.year, dt.month, dt.day, dt.hour,15*(dt.minute // 15)))
    

    The above example to always round to the previous quarter hour (behavior similar to floor function).

    EDIT

    To round to the correct quarter hour (as in , if its 7 mins 30 seconds past previous quarter, to show the next quarter) . We can use the below example -

    import datetime
    df['<column>'] = df['<column>'].apply(lambda dt: datetime.datetime(dt.year, dt.month, dt.day, dt.hour,15*round((float(dt.minute) + float(dt.second)/60) / 15)))
    

    The above would only take the latest seconds into consideration , if you want the millisecond/microsecond into consideration , you can add that to the above equation as - (float(dt.minute) + float(dt.second)/60 + float(dt.microsecond)/60000000)

    0 讨论(0)
  • 2020-12-01 01:20

    Anand S Kumar's answer doesn't round to the nearest quarter hour, it cuts off the minutes to the nearest 15 minutes below it.

    Actually, in your example 2015-07-18 13:53:33.280 should round to 2015-07-18 14:00:00.000 since 53:33.280 is closer to 60 minutes than 45 minutes.

    I found an more robust answer for rounding in this post.

    For your situation this should work:

    import datetime
    
    def round_time(time, round_to):
        """roundTo is the number of minutes to round to"""
        rounded = time + datetime.timedelta(minutes=round_to/2.)
        rounded -= datetime.timedelta(minutes=rounded.minute % round_to,
                                      seconds=rounded.second,
                                      microseconds=rounded.microsecond)
        return rounded
    
    dt['dtcolumn'] = df['dtcolumn'].apply(lambda x: round_time(x))
    
    0 讨论(0)
  • 2020-12-01 01:32

    This looks a little nicer

    column.dt. allows the datetime functions for datetime columns, like column.str. does for string-like columns

    datetime-like properties API reference

    import pandas as pd
    
    # test df
    df = pd.DataFrame([{'old_column':pd.Timestamp('2015-07-18 13:53:33.280')}])
    
    df['new_column'] = df['old_column'].dt.round('15min')
    
    df
    
    0 讨论(0)
  • 2020-12-01 01:34

    You can use round(freq). There is also a shortcut column.dt for datetime functions access (as @laurens-koppenol suggests).

    Here's one-liner:

    df['old column'].dt.round('15min')  
    

    String aliases for valid frequencies can be found here. Full working example:

    In [1]: import pandas as pd    
    In [2]: df = pd.DataFrame([pd.Timestamp('2015-07-18 13:53:33.280'),
                               pd.Timestamp('2015-07-18 13:33:33.330')],
                             columns=['old column'])
    
    In [3]: df['new column']=df['old column'].dt.round('15min')  
    In [4]: df
    Out[4]: 
                   old column          new column
    0 2015-07-18 13:53:33.280 2015-07-18 14:00:00
    1 2015-07-18 13:33:33.330 2015-07-18 13:30:00
    
    0 讨论(0)
提交回复
热议问题