I have data in different columns but I don\'t know how to extract it to save it in another variable.
index a b c
1 2 3 4
2 3 4 5
The different approaches discussed in above responses are based on the assumption that either the user knows column indices to drop or subset on, or the user wishes to subset a dataframe using a range of columns (for instance between 'C' : 'E'). pandas.DataFrame.drop() is certainly an option to subset data based on a list of columns defined by user (though you have to be cautious that you always use copy of dataframe and inplace parameters should not be set to True!!)
Another option is to use pandas.columns.difference(), which does a set difference on column names, and returns an index type of array containing desired columns. Following is the solution:
df = pd.DataFrame([[2,3,4],[3,4,5]],columns=['a','b','c'],index=[1,2])
columns_for_differencing = ['a']
df1 = df.copy()[df.columns.difference(columns_for_differencing)]
print(df1)
The output would be:
b c
1 3 4
2 4 5
I realize this question is quite old, but in the latest version of pandas there is an easy way to do exactly this. Column names (which are strings) can be sliced in whatever manner you like.
columns = ['b', 'c']
df1 = pd.DataFrame(df, columns=columns)
With pandas,
wit column names
dataframe[['column1','column2']]
to select by iloc and specific columns with index number:
dataframe.iloc[:,[1,2]]
with loc column names can be used like
dataframe.loc[:,['column1','column2']]
I found this method to be very useful:
# iloc[row slicing, column slicing]
surveys_df.iloc [0:3, 1:4]
More details can be found here
You can use pandas. I create the DataFrame:
import pandas as pd
df = pd.DataFrame([[1, 2,5], [5,4, 5], [7,7, 8], [7,6,9]],
index=['Jane', 'Peter','Alex','Ann'],
columns=['Test_1', 'Test_2', 'Test_3'])
The DataFrame:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
To select 1 or more columns by name:
df[['Test_1','Test_3']]
Test_1 Test_3
Jane 1 5
Peter 5 5
Alex 7 8
Ann 7 9
You can also use:
df.Test_2
And yo get column Test_2
Jane 2
Peter 4
Alex 7
Ann 6
You can also select columns and rows from these rows using .loc()
. This is called "slicing". Notice that I take from column Test_1
to Test_3
df.loc[:,'Test_1':'Test_3']
The "Slice" is:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
And if you just want Peter
and Ann
from columns Test_1
and Test_3
:
df.loc[['Peter', 'Ann'],['Test_1','Test_3']]
You get:
Test_1 Test_3
Peter 5 5
Ann 7 9
In [39]: df
Out[39]:
index a b c
0 1 2 3 4
1 2 3 4 5
In [40]: df1 = df[['b', 'c']]
In [41]: df1
Out[41]:
b c
0 3 4
1 4 5