Selecting multiple columns in a pandas dataframe

后端 未结 19 1776
醉话见心
醉话见心 2020-11-22 00:08

I have data in different columns but I don\'t know how to extract it to save it in another variable.

index  a   b   c
1      2   3   4
2      3   4   5


        
相关标签:
19条回答
  • 2020-11-22 00:08

    The different approaches discussed in above responses are based on the assumption that either the user knows column indices to drop or subset on, or the user wishes to subset a dataframe using a range of columns (for instance between 'C' : 'E'). pandas.DataFrame.drop() is certainly an option to subset data based on a list of columns defined by user (though you have to be cautious that you always use copy of dataframe and inplace parameters should not be set to True!!)

    Another option is to use pandas.columns.difference(), which does a set difference on column names, and returns an index type of array containing desired columns. Following is the solution:

    df = pd.DataFrame([[2,3,4],[3,4,5]],columns=['a','b','c'],index=[1,2])
    columns_for_differencing = ['a']
    df1 = df.copy()[df.columns.difference(columns_for_differencing)]
    print(df1)
    

    The output would be: b c 1 3 4 2 4 5

    0 讨论(0)
  • 2020-11-22 00:10

    I realize this question is quite old, but in the latest version of pandas there is an easy way to do exactly this. Column names (which are strings) can be sliced in whatever manner you like.

    columns = ['b', 'c']
    df1 = pd.DataFrame(df, columns=columns)
    
    0 讨论(0)
  • 2020-11-22 00:11

    With pandas,

    wit column names

    dataframe[['column1','column2']]
    

    to select by iloc and specific columns with index number:

    dataframe.iloc[:,[1,2]]
    

    with loc column names can be used like

    dataframe.loc[:,['column1','column2']]
    
    0 讨论(0)
  • 2020-11-22 00:12

    I found this method to be very useful:

    # iloc[row slicing, column slicing]
    surveys_df.iloc [0:3, 1:4]
    

    More details can be found here

    0 讨论(0)
  • 2020-11-22 00:13

    You can use pandas. I create the DataFrame:

        import pandas as pd
        df = pd.DataFrame([[1, 2,5], [5,4, 5], [7,7, 8], [7,6,9]], 
                          index=['Jane', 'Peter','Alex','Ann'],
                          columns=['Test_1', 'Test_2', 'Test_3'])
    

    The DataFrame:

               Test_1  Test_2  Test_3
        Jane        1       2       5
        Peter       5       4       5
        Alex        7       7       8
        Ann         7       6       9
    

    To select 1 or more columns by name:

        df[['Test_1','Test_3']]
    
               Test_1  Test_3
        Jane        1       5
        Peter       5       5
        Alex        7       8
        Ann         7       9
    

    You can also use:

        df.Test_2
    

    And yo get column Test_2

        Jane     2
        Peter    4
        Alex     7
        Ann      6
    

    You can also select columns and rows from these rows using .loc(). This is called "slicing". Notice that I take from column Test_1to Test_3

        df.loc[:,'Test_1':'Test_3']
    

    The "Slice" is:

                Test_1  Test_2  Test_3
         Jane        1       2       5
         Peter       5       4       5
         Alex        7       7       8
         Ann         7       6       9
    

    And if you just want Peter and Ann from columns Test_1 and Test_3:

        df.loc[['Peter', 'Ann'],['Test_1','Test_3']]
    

    You get:

               Test_1  Test_3
        Peter       5       5
        Ann         7       9
    
    0 讨论(0)
  • 2020-11-22 00:15
    In [39]: df
    Out[39]: 
       index  a  b  c
    0      1  2  3  4
    1      2  3  4  5
    
    In [40]: df1 = df[['b', 'c']]
    
    In [41]: df1
    Out[41]: 
       b  c
    0  3  4
    1  4  5
    
    0 讨论(0)
提交回复
热议问题