What are the available datatypes for 'dtype' with NumPy's loadtxt() an genfromtxt?

后端 未结 3 1548
猫巷女王i
猫巷女王i 2020-12-01 00:19

What are the available numpy.loadtxt or numpy.genfromtxt for importing table data with varying datatypes, and what are the available abbreviations for the use (e.g.

相关标签:
3条回答
  • 2020-12-01 00:38

    In addition to np.sctypeDict, there are these variables:

    In [141]: np.typecodes
    Out[141]: 
    {'All': '?bhilqpBHILQPefdgFDGSUVOMm',
     'AllFloat': 'efdgFDG',
     'AllInteger': 'bBhHiIlLqQpP',
     'Character': 'c',
     'Complex': 'FDG',
     'Datetime': 'Mm',
     'Float': 'efdg',
     'Integer': 'bhilqp',
     'UnsignedInteger': 'BHILQP'}
    
    In [143]: np.sctypes
    Out[143]: 
    {'complex': [numpy.complex64, numpy.complex128, numpy.complex192],
     'float': [numpy.float16, numpy.float32, numpy.float64, numpy.float96],
     'int': [numpy.int8, numpy.int16, numpy.int32, numpy.int32, numpy.int64],
     'others': [bool, object, str, unicode, numpy.void],
     'uint': [numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint32, numpy.uint64]}
    
    0 讨论(0)
  • 2020-12-01 00:48

    Generic info about dtypes: http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

    From http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html#arrays-scalars-built-in

    In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors are mostly based on the types available in the C language that CPython is written in, with several additional types compatible with Python’s types.

    And what I didn't realise, is:

    The C-like names are associated with character codes, which are shown in the table. Use of the character codes, however, is discouraged.

    I doubt the numpy code/doc base is going anyway anytime soon, so that says it all I guess!

    0 讨论(0)
  • 2020-12-01 00:48

    for k, v in np.sctypeDict.iteritems(): print '{0:14s} : {1:40s}'.format(str(k), v)

    Q              : <type 'numpy.uint64'>      
    U              : <type 'numpy.unicode_'>
    a              : <type 'numpy.string_'>
    

    etc.

    0 讨论(0)
提交回复
热议问题