What are the available numpy.loadtxt or numpy.genfromtxt for importing table data with varying datatypes, and what are the available abbreviations for the use (e.g.
In addition to np.sctypeDict
, there are these variables:
In [141]: np.typecodes
Out[141]:
{'All': '?bhilqpBHILQPefdgFDGSUVOMm',
'AllFloat': 'efdgFDG',
'AllInteger': 'bBhHiIlLqQpP',
'Character': 'c',
'Complex': 'FDG',
'Datetime': 'Mm',
'Float': 'efdg',
'Integer': 'bhilqp',
'UnsignedInteger': 'BHILQP'}
In [143]: np.sctypes
Out[143]:
{'complex': [numpy.complex64, numpy.complex128, numpy.complex192],
'float': [numpy.float16, numpy.float32, numpy.float64, numpy.float96],
'int': [numpy.int8, numpy.int16, numpy.int32, numpy.int32, numpy.int64],
'others': [bool, object, str, unicode, numpy.void],
'uint': [numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint32, numpy.uint64]}
Generic info about dtypes
: http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
From http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html#arrays-scalars-built-in
In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors are mostly based on the types available in the C language that CPython is written in, with several additional types compatible with Python’s types.
And what I didn't realise, is:
The C-like names are associated with character codes, which are shown in the table. Use of the character codes, however, is discouraged.
I doubt the numpy
code/doc base is going anyway anytime soon, so that says it all I guess!
for k, v in np.sctypeDict.iteritems(): print '{0:14s} : {1:40s}'.format(str(k), v)
Q : <type 'numpy.uint64'>
U : <type 'numpy.unicode_'>
a : <type 'numpy.string_'>
etc.