I read the Calculate Bounding box coordinates from a rotated rectangle to know how to calculate bounding box coordinates from a rotated rectangle. But in a special case as f
Given bounding box dimensions bx
by by
and t
being the anticlockwise rotation of rectangle sized x
by y
:
x = (1/(cos(t)^2-sin(t)^2)) * ( bx * cos(t) - by * sin(t))
y = (1/(cos(t)^2-sin(t)^2)) * (- bx * sin(t) + by * cos(t))
Why is this?
First, consider that the length bx
is cut in two pieces, a
and b
, by the corner of the rectangle. Use trigonometry to express bx
in terms of x
, y
, and theta
:
bx = b + a
bx = x * cos(t) + y * sin(t) [1]
and similarly for by
:
by = c + d
by = x * sin(t) + y * cos(t) [2]
1 and 2 can be expressed in matrix form as:
[ bx ] = [ cos(t) sin(t) ] * [ x ] [3]
[ by ] [ sin(t) cos(t) ] [ y ]
Note that the matrix is nearly a rotation matrix (but not quite - it's off by a minus sign.)
Left-divide the matrix on both sides, giving:
[ x ] = inverse ( [ cos(t) sin(t) ] * [ bx ] [4]
[ y ] [ sin(t) cos(t) ] ) [ by ]
The matrix inverse is easy to evaluate for a 2x2 matrix and expands to:
[ x ] = (1/(cos(t)^2-sin(t)^2)) * [ cos(t) -sin(t) ] * [ bx ] [5]
[ y ] [-sin(t) cos(t) ] [ by ]
[5] gives the two formulas:
x = (1/(cos(t)^2-sin(t)^2)) * ( bx * cos(t) - by * sin(t)) [6]
y = (1/(cos(t)^2-sin(t)^2)) * (- bx * sin(t) + by * cos(t))
Easy as pie!
You'll probably need something like affine transformation to discover point coordinates. And then using standard geometry formulas calculate the size.