I\'ve been programming a long time, and the programs I see, when they run out of memory, attempt to clean up and exit, i.e. fail gracefully. I can\'t remember the last time
I know you asked for arguments for, but I can only see arguments against.
I don't see anyway to achieve this in a multi-threaded application. How do you know which thread is actually responsible for the out-of-memory error? One thread could allocating new memory constantly and have gc-roots to 99% of the heap, but the first allocation that fails occurs in another thread.
A practical example: whenever I have occurred an OutOfMemoryError in our Java application (running on a JBoss server), it's not like one thread dies and the rest of the server continues to run: no, there are several OOMEs, killing several threads (some of which are JBoss' internal threads). I don't see what I as a programmer could do to recover from that - or even what JBoss could do to recover from it. In fact, I am not even sure you CAN: the javadoc for VirtualMachineError suggests that the JVM may be "broken" after such an error is thrown. But maybe the question was more targeted at language design.
I think that like many things, it's a cost/benefit analysis. You can program in attempted recovery from a malloc() failure - although it may be difficult (your handler had better not fall foul of the same memory shortage it's meant to deal with).
You've already noted that the commonest case is to clean up and fail gracefully. In that case it's been decided that the cost of aborting gracefully is lower than the combination of development cost and performance cost in recovering.
I'm sure you can think of your own examples of situations where terminating the program is a very expensive option (life support machine, spaceship control, long-running and time-critical financial calculation etc.) - although the first line of defence is of course to ensure that the program has predictable memory usage and that the environment can supply that.
Yes, OOM is recoverable. As an extreme example, the Unix and Windows operating systems recover quite nicely from OOM conditions, most of the time. The applications fail, but the OS survives (assuming there is enough memory for the OS to properly start up in the first place).
I only cite this example to show that it can be done.
The problem of dealing with OOM is really dependent on your program and environment.
For example, in many cases the place where the OOM happens most likely is NOT the best place to actually recover from an OOM state.
Now, a custom allocator could possibly work as a central point within the code that can handle an OOM. The Java allocator will perform a full GC before is actually throws a OOM exception.
The more "application aware" that your allocator is, the better suited it would be as a central handler and recovery agent for OOM. Using Java again, it's allocator isn't particularly application aware.
This is where something like Java is readily frustrating. You can't override the allocator. So, while you could trap OOM exceptions in your own code, there's nothing saying that some library you're using is properly trapping, or even properly THROWING an OOM exception. It's trivial to create a class that is forever ruined by a OOM exception, as some object gets set to null and "that never happen", and it's never recoverable.
So, yes, OOM is recoverable, but it can be VERY hard, particularly in modern environments like Java and it's plethora of 3rd party libraries of various quality.
It really depends on what you're building.
It's not entirely unreasonable for a webserver to fail one request/response pair but then keep on going for further requests. You'd have to be sure that the single failure didn't have detrimental effects on the global state, however - that would be the tricky bit. Given that a failure causes an exception in most managed environments (e.g. .NET and Java) I suspect that if the exception is handled in "user code" it would be recoverable for future requests - e.g. if one request tried to allocate 10GB of memory and failed, that shouldn't harm the rest of the system. If the system runs out of memory while trying to hand off the request to the user code, however - that kind of thing could be nastier.
In a library, you want to efficiently copy a file. When you do that, you'll usually find that copying using a small number of big chunks is much more effective than copying a lot of smaller ones (say, it's faster to copy a 15MB file by copying 15 1MB chunks than copying 15'000 1K chunks).
But the code works with any chunk size. So while it may be faster with 1MB chunks, if you design for a system where a lot of files are copied, it may be wise to catch OutOfMemoryError and reduce the chunk size until you succeed.
Another place is a cache for Object stored in a database. You want to keep as many objects in the cache as possible but you don't want to interfere with the rest of the application. Since these objects can be recreated, it's a smart way to conserve memory to attach the cache to an out of memory handler to drop entries until the rest of the app has enough room to breathe, again.
Lastly, for image manipulation, you want to load as much of the image into memory as possible. Again, an OOM-handler allows you to implement that without knowing in advance how much memory the user or OS will grant your code.
[EDIT] Note that I work under the assumption here that you've given the application a fixed amount of memory and this amount is smaller than the total available memory excluding swap space. If you can allocate so much memory that part of it has to be swapped out, several of my comments don't make sense anymore.
It's just puzzling me now.
At work, we have a bundle of applications working together, and memory is running low. While the problem is either make the application bundle go 64-bit (and so, be able to work beyond the 2 Go limits we have on a normal Win32 OS), and/or reduce our use of memory, this problem of "How to recover from a OOM" won't quit my head.
Of course, I have no solution, but still play at searching for one for C++ (because of RAII and exceptions, mainly).
Perhaps a process supposed to recover gracefully should break down its processing in atomic/rollback-able tasks (i.e. using only functions/methods giving strong/nothrow exception guarantee), with a "buffer/pool of memory" reserved for recovering purposes.
Should one of the task fails, the C++ bad_alloc would unwind the stack, free some stack/heap memory through RAII. The recovering feature would then salvage as much as possible (saving the initial data of the task on the disk, to use on a later try), and perhaps register the task data for later try.
I do believe the use of C++ strong/nothrow guanrantees can help a process to survive in low-available-memory conditions, even if it would be akin memory swapping (i.e. slow, somewhat unresponding, etc.), but of course, this is only theory. I just need to get smarter on the subject before trying to simulate this (i.e. creating a C++ program, with a custom new/delete allocator with limited memory, and then try to do some work under those stressful condition).
Well...