How do I calculate distance between two GPS coordinates (using latitude and longitude)?
Here it is in C# (lat and long in radians):
double CalculateGreatCircleDistance(double lat1, double long1, double lat2, double long2, double radius)
{
return radius * Math.Acos(
Math.Sin(lat1) * Math.Sin(lat2)
+ Math.Cos(lat1) * Math.Cos(lat2) * Math.Cos(long2 - long1));
}
If your lat and long are in degrees then divide by 180/PI to convert to radians.
This is version from "Henry Vilinskiy" adapted for MySQL and Kilometers:
CREATE FUNCTION `CalculateDistanceInKm`(
fromLatitude float,
fromLongitude float,
toLatitude float,
toLongitude float
) RETURNS float
BEGIN
declare distance float;
select
6367 * ACOS(
round(
COS(RADIANS(90-fromLatitude)) *
COS(RADIANS(90-toLatitude)) +
SIN(RADIANS(90-fromLatitude)) *
SIN(RADIANS(90-toLatitude)) *
COS(RADIANS(fromLongitude-toLongitude))
,15)
)
into distance;
return round(distance,3);
END;
you can find a implementation of this (with some good explanation) in F# on fssnip
here are the important parts:
let GreatCircleDistance<[<Measure>] 'u> (R : float<'u>) (p1 : Location) (p2 : Location) =
let degToRad (x : float<deg>) = System.Math.PI * x / 180.0<deg/rad>
let sq x = x * x
// take the sin of the half and square the result
let sinSqHf (a : float<rad>) = (System.Math.Sin >> sq) (a / 2.0<rad>)
let cos (a : float<deg>) = System.Math.Cos (degToRad a / 1.0<rad>)
let dLat = (p2.Latitude - p1.Latitude) |> degToRad
let dLon = (p2.Longitude - p1.Longitude) |> degToRad
let a = sinSqHf dLat + cos p1.Latitude * cos p2.Latitude * sinSqHf dLon
let c = 2.0 * System.Math.Atan2(System.Math.Sqrt(a), System.Math.Sqrt(1.0-a))
R * c
I needed to implement this in PowerShell, hope it can help someone else. Some notes about this method
I'm using Haversine, as other posts have pointed out Vincenty's formulae is much more accurate
Function MetresDistanceBetweenTwoGPSCoordinates($latitude1, $longitude1, $latitude2, $longitude2)
{
$Rad = ([math]::PI / 180);
$earthsRadius = 6378.1370 # Earth's Radius in KM
$dLat = ($latitude2 - $latitude1) * $Rad
$dLon = ($longitude2 - $longitude1) * $Rad
$latitude1 = $latitude1 * $Rad
$latitude2 = $latitude2 * $Rad
$a = [math]::Sin($dLat / 2) * [math]::Sin($dLat / 2) + [math]::Sin($dLon / 2) * [math]::Sin($dLon / 2) * [math]::Cos($latitude1) * [math]::Cos($latitude2)
$c = 2 * [math]::ATan2([math]::Sqrt($a), [math]::Sqrt(1-$a))
$distance = [math]::Round($earthsRadius * $c * 1000, 0) #Multiple by 1000 to get metres
Return $distance
}
I needed to calculate a lot of distances between the points for my project, so I went ahead and tried to optimize the code, I have found here. On average in different browsers my new implementation runs 2 times faster than the most upvoted answer.
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
You can play with my jsPerf and see the results here.
Recently I needed to do the same in python, so here is a python implementation:
from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
return 12742 * asin(sqrt(a))
And for the sake of completeness: Haversine on wiki.
i took the top answer and used it in a Scala program
import java.lang.Math.{atan2, cos, sin, sqrt}
def latLonDistance(lat1: Double, lon1: Double)(lat2: Double, lon2: Double): Double = {
val earthRadiusKm = 6371
val dLat = (lat2 - lat1).toRadians
val dLon = (lon2 - lon1).toRadians
val latRad1 = lat1.toRadians
val latRad2 = lat2.toRadians
val a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(latRad1) * cos(latRad2)
val c = 2 * atan2(sqrt(a), sqrt(1 - a))
earthRadiusKm * c
}
i curried the function in order to be able to easily produce functions that have one of the two locations fixed and require only a pair of lat/lon to produce distance.