Dataframe.resample() works only with timeseries data. I cannot find a way of getting every nth row from non-timeseries data. What is the best method?
Though @chrisb's accepted answer does answer the question, I would like to add to it the following.
A simple method I use to get the nth
data or drop the nth
row is the following:
df1 = df[df.index % 3 != 0] # Excludes every 3rd row starting from 0
df2 = df[df.index % 3 == 0] # Selects every 3rd raw starting from 0
This arithmetic based sampling has the ability to enable even more complex row-selections.
This assumes, of course, that you have an index
column of ordered, consecutive, integers starting at 0.
I had a similar requirement, but I wanted the n'th item in a particular group. This is how I solved it.
groups = data.groupby(['group_key'])
selection = groups['index_col'].apply(lambda x: x % 3 == 0)
subset = data[selection]
There is an even simpler solution to the accepted answer that involves directly invoking df.__getitem__
.
df = pd.DataFrame('x', index=range(5), columns=list('abc'))
df
a b c
0 x x x
1 x x x
2 x x x
3 x x x
4 x x x
For example, to get every 2 rows, you can do
df[::2]
a b c
0 x x x
2 x x x
4 x x x
There's also GroupBy.first/GroupBy.head, you group on the index:
df.index // 2
# Int64Index([0, 0, 1, 1, 2], dtype='int64')
df.groupby(df.index // 2).first()
# Alternatively,
# df.groupby(df.index // 2).head(1)
a b c
0 x x x
1 x x x
2 x x x
The index is floor-divved by the stride (2, in this case). If the index is non-numeric, instead do
# df.groupby(np.arange(len(df)) // 2).first()
df.groupby(pd.RangeIndex(len(df)) // 2).first()
a b c
0 x x x
1 x x x
2 x x x
I'd use iloc
, which takes a row/column slice, both based on integer position and following normal python syntax. If you want every 5th row:
df.iloc[::5, :]
A solution I came up with when using the index was not viable ( possibly the multi-Gig .csv was too large, or I missed some technique that would allow me to reindex without crashing ).
Walk through one row at a time and add the nth row to a new dataframe.
import pandas as pd
from csv import DictReader
def make_downsampled_df(filename, interval):
with open(filename, 'r') as read_obj:
csv_dict_reader = DictReader(read_obj)
column_names = csv_dict_reader.fieldnames
df = pd.DataFrame(columns=column_names)
for index, row in enumerate(csv_dict_reader):
if index % interval == 0:
print(str(row))
df = df.append(row, ignore_index=True)
return df