I\'m struggling to understand the dynamic programming solution to linear partitioning problem. I am reading the The Algorithm Design Manual and the problem is described in s
The following is a modified implementation of Skienna's Linear partitioning algorithm in python that does not calculate the last k column values except of the answer itself : M[N][K] (a cell calculation only depends on the previous )
A test against the input {1,2,3,4,5,6,7,8,9} (used in Skienna's example in the book ) yields a slightly different matrix M ( given the above modification) but correctly returns the final result (in this example the minimum-cost partitioning of s into k ranges is 17 , and matrix D is used to print the list of dividers positions that lead to this optimum) .
import math
def partition(s, k):
# compute prefix sums
n = len(s)
p = [0 for _ in range(n)]
m = [[0 for _ in range(k)] for _ in range(n)]
d = [[0 for _ in range(k)] for _ in range(n)]
for i in range(n):
p[i] = p[i-1] + s[i]
# initialize boundary conditions
for i in range(n):
m[i][0] = p[i]
for i in range(k):
m[0][i] = s[0]
# Evaluate main recurrence
for i in range(1, n):
"""
omit calculating the last M's column cells
except for the sought minimum cost M[N][K]
"""
if i != n - 1:
jlen = k - 1
else:
jlen = k
for j in range(1, jlen):
"""
- computes the minimum-cost partitioning of the set {S1,S2,.., Si} into j partitions .
- this part should be investigated more closely .
"""
#
m[i][j] = math.inf
# This loop needs to be traced to understand it better
for x in range(i):
sup = max(m[x][j-1], p[i] - p[x])
if m[i][j] > sup:
m[i][j] = sup
# record which divider position was required to achieve the value s
d[i][j] = x+1
return s, d, n, k
def reconstruct_partition(S, D, N, K):
if K == 0:
for i in range(N):
print(S[i], end="_")
print(" | ", end="")
else:
reconstruct_partition(S, D, D[N-1][K-1], K-1)
for i in range(D[N-1][K-1], N):
print(S[i], end="_")
print(" | ", end="")
# MAIN PROGRAM
S, D, N, K = partition([1, 2, 3, 4, 5, 6, 7, 8, 9], 3)
reconstruct_partition(S, D, N, K)
Be aware that there's a small mistake in the explanation of the algorithm in the book, look in the errata for the text "(*) Page 297".
About your questions:
reconstruct_partition
procedure, using the rightmost table in figure 8.8 as a guideEdit:
Here's my implementation of the linear partitioning algorithm. It's based on Skiena's algorithm, but in a pythonic way; and it returns a list of the partitions.
from operator import itemgetter
def linear_partition(seq, k):
if k <= 0:
return []
n = len(seq) - 1
if k > n:
return map(lambda x: [x], seq)
table, solution = linear_partition_table(seq, k)
k, ans = k-2, []
while k >= 0:
ans = [[seq[i] for i in xrange(solution[n-1][k]+1, n+1)]] + ans
n, k = solution[n-1][k], k-1
return [[seq[i] for i in xrange(0, n+1)]] + ans
def linear_partition_table(seq, k):
n = len(seq)
table = [[0] * k for x in xrange(n)]
solution = [[0] * (k-1) for x in xrange(n-1)]
for i in xrange(n):
table[i][0] = seq[i] + (table[i-1][0] if i else 0)
for j in xrange(k):
table[0][j] = seq[0]
for i in xrange(1, n):
for j in xrange(1, k):
table[i][j], solution[i-1][j-1] = min(
((max(table[x][j-1], table[i][0]-table[x][0]), x) for x in xrange(i)),
key=itemgetter(0))
return (table, solution)
I've implemented Óscar López algorithm on PHP. Please feel free to use it whenever you need it.
/**
* Example: linear_partition([9,2,6,3,8,5,8,1,7,3,4], 3) => [[9,2,6,3],[8,5,8],[1,7,3,4]]
* @param array $seq
* @param int $k
* @return array
*/
protected function linear_partition(array $seq, $k)
{
if ($k <= 0) {
return array();
}
$n = count($seq) - 1;
if ($k > $n) {
return array_map(function ($x) {
return array($x);
}, $seq);
}
list($table, $solution) = $this->linear_partition_table($seq, $k);
$k = $k - 2;
$ans = array();
while ($k >= 0) {
$ans = array_merge(array(array_slice($seq, $solution[$n - 1][$k] + 1, $n - $solution[$n - 1][$k])), $ans);
$n = $solution[$n - 1][$k];
$k = $k - 1;
}
return array_merge(array(array_slice($seq, 0, $n + 1)), $ans);
}
protected function linear_partition_table($seq, $k)
{
$n = count($seq);
$table = array_fill(0, $n, array_fill(0, $k, 0));
$solution = array_fill(0, $n - 1, array_fill(0, $k - 1, 0));
for ($i = 0; $i < $n; $i++) {
$table[$i][0] = $seq[$i] + ($i ? $table[$i - 1][0] : 0);
}
for ($j = 0; $j < $k; $j++) {
$table[0][$j] = $seq[0];
}
for ($i = 1; $i < $n; $i++) {
for ($j = 1; $j < $k; $j++) {
$current_min = null;
$minx = PHP_INT_MAX;
for ($x = 0; $x < $i; $x++) {
$cost = max($table[$x][$j - 1], $table[$i][0] - $table[$x][0]);
if ($current_min === null || $cost < $current_min) {
$current_min = $cost;
$minx = $x;
}
}
$table[$i][$j] = $current_min;
$solution[$i - 1][$j - 1] = $minx;
}
}
return array($table, $solution);
}