Say I have a dataframe with 3 columns: Date, Ticker, Value (no index, at least to start with). I have many dates and many tickers, but each (ticker, date)
tupl
I know this is an old question, so I'm assuming this functionality didn't exist at the time. But for those with this question now, this solution works well:
df.sort_values(['ticker', 'date'], inplace=True)
df['diffs'] = df.groupby('ticker')['value'].diff()
In order to return to the original order, you can the use
df.sort_index(inplace=True)
wouldn't be just easier to do what yourself describe, namely
df.sort(['ticker', 'date'], inplace=True)
df['diffs'] = df['value'].diff()
and then correct for borders:
mask = df.ticker != df.ticker.shift(1)
df['diffs'][mask] = np.nan
to maintain the original index you may do idx = df.index
in the beginning, and then at the end you can do df.reindex(idx)
, or if it is a huge dataframe, perform the operations on
df.filter(['ticker', 'date', 'value'])
and then join
the two dataframes at the end.
edit: alternatively, ( though still not using groupby
)
df.set_index(['ticker','date'], inplace=True)
df.sort_index(inplace=True)
df['diffs'] = np.nan
for idx in df.index.levels[0]:
df.diffs[idx] = df.value[idx].diff()
for
date ticker value
0 63 C 1.65
1 88 C -1.93
2 22 C -1.29
3 76 A -0.79
4 72 B -1.24
5 34 A -0.23
6 92 B 2.43
7 22 A 0.55
8 32 A -2.50
9 59 B -1.01
this will produce:
value diffs
ticker date
A 22 0.55 NaN
32 -2.50 -3.05
34 -0.23 2.27
76 -0.79 -0.56
B 59 -1.01 NaN
72 -1.24 -0.23
92 2.43 3.67
C 22 -1.29 NaN
63 1.65 2.94
88 -1.93 -3.58
# Make sure your data is sorted properly
df = df.sort_values(by=['group_var', 'value'])
# only take diffs where next row is of the same group
df['diffs'] = np.where(df.group_var == df.group_var.shift(1), df.value.diff(), 0)
Explanation:
Ok. Lots of thinking about this, and I think this is my favorite combination of the solutions above and a bit of playing around. Original data lives in df
:
df.sort(['ticker', 'date'], inplace=True)
# for this example, with diff, I think this syntax is a bit clunky
# but for more general examples, this should be good. But can we do better?
df['diffs'] = df.groupby(['ticker'])['value'].transform(lambda x: x.diff())
df.sort_index(inplace=True)
This will accomplish everything I want. And what I really like is that it can be generalized to cases where you want to apply a function more intricate than diff
. In particular, you could do things like lambda x: pd.rolling_mean(x, 20, 20)
to make a column of rolling means where you don't need to worry about each ticker's data being corrupted by that of any other ticker (groupby
takes care of that for you...).
So here's the question I'm left with...why doesn't the following work for the line that starts df['diffs']
:
df['diffs'] = df.groupby[('ticker')]['value'].transform(np.diff)
when I do that, I get a diffs
column full of 0's. Any thoughts on that?
Here is a solution that builds on what @behzad.nouri wrote, but using pd.IndexSlice
:
df = df.set_index(['ticker', 'date']).sort_index()[['value']]
df['diff'] = np.nan
idx = pd.IndexSlice
for ix in df.index.levels[0]:
df.loc[ idx[ix,:], 'diff'] = df.loc[idx[ix,:], 'value' ].diff()
For:
> df
date ticker value
0 63 C 1.65
1 88 C -1.93
2 22 C -1.29
3 76 A -0.79
4 72 B -1.24
5 34 A -0.23
6 92 B 2.43
7 22 A 0.55
8 32 A -2.50
9 59 B -1.01
It returns:
> df
value diff
ticker date
A 22 0.55 NaN
32 -2.50 -3.05
34 -0.23 2.27
76 -0.79 -0.56
B 59 -1.01 NaN
72 -1.24 -0.23
92 2.43 3.67
C 22 -1.29 NaN
63 1.65 2.94
88 -1.93 -3.58
You can use pivot
to convert the dataframe into date-ticker table, here is an example:
create the test data first:
import pandas as pd
import numpy as np
import random
from itertools import product
dates = pd.date_range(start="2013-12-01", periods=10).to_native_types()
ticks = "ABCDEF"
pairs = list(product(dates, ticks))
random.shuffle(pairs)
pairs = pairs[:-5]
values = np.random.rand(len(pairs))
dates, ticks = zip(*pairs)
df = pd.DataFrame({"date":dates, "tick":ticks, "value":values})
convert the dataframe by pivot
format:
df2 = df.pivot(index="date", columns="tick", values="value")
fill NaN:
df2 = df2.fillna(method="ffill")
call diff()
method:
df2.diff()
here is what df2
looks like:
tick A B C D E F
date
2013-12-01 0.077260 0.084008 0.711626 0.071267 0.811979 0.429552
2013-12-02 0.106349 0.141972 0.457850 0.338869 0.721703 0.217295
2013-12-03 0.330300 0.893997 0.648687 0.628502 0.543710 0.217295
2013-12-04 0.640902 0.827559 0.243816 0.819218 0.543710 0.190338
2013-12-05 0.263300 0.604084 0.655723 0.299913 0.756980 0.135087
2013-12-06 0.278123 0.243264 0.907513 0.723819 0.506553 0.717509
2013-12-07 0.960452 0.243264 0.357450 0.160799 0.506553 0.194619
2013-12-08 0.670322 0.256874 0.637153 0.582727 0.628581 0.159636
2013-12-09 0.226519 0.284157 0.388755 0.325461 0.957234 0.810376
2013-12-10 0.958412 0.852611 0.472012 0.832173 0.957234 0.723234