Get total of Pandas column

前端 未结 5 576
予麋鹿
予麋鹿 2020-11-30 18:58

Target

I have a Pandas data frame, as shown below, with multiple columns and would like to get the total of column, MyColumn.<

相关标签:
5条回答
  • 2020-11-30 19:19

    Another option you can go with here:

    df.loc["Total", "MyColumn"] = df.MyColumn.sum()
    
    #         X  MyColumn      Y       Z
    #0        A     84.0    13.0    69.0
    #1        B     76.0    77.0   127.0
    #2        C     28.0    69.0    16.0
    #3        D     28.0    28.0    31.0
    #4        E     19.0    20.0    85.0
    #5        F     84.0   193.0    70.0
    #Total  NaN    319.0     NaN     NaN
    

    You can also use append() method:

    df.append(pd.DataFrame(df.MyColumn.sum(), index = ["Total"], columns=["MyColumn"]))
    


    Update:

    In case you need to append sum for all numeric columns, you can do one of the followings:

    Use append to do this in a functional manner (doesn't change the original data frame):

    # select numeric columns and calculate the sums
    sums = df.select_dtypes(pd.np.number).sum().rename('total')
    
    # append sums to the data frame
    df.append(sums)
    #         X  MyColumn      Y      Z
    #0        A      84.0   13.0   69.0
    #1        B      76.0   77.0  127.0
    #2        C      28.0   69.0   16.0
    #3        D      28.0   28.0   31.0
    #4        E      19.0   20.0   85.0
    #5        F      84.0  193.0   70.0
    #total  NaN     319.0  400.0  398.0
    

    Use loc to mutate data frame in place:

    df.loc['total'] = df.select_dtypes(pd.np.number).sum()
    df
    #         X  MyColumn      Y      Z
    #0        A      84.0   13.0   69.0
    #1        B      76.0   77.0  127.0
    #2        C      28.0   69.0   16.0
    #3        D      28.0   28.0   31.0
    #4        E      19.0   20.0   85.0
    #5        F      84.0  193.0   70.0
    #total  NaN     638.0  800.0  796.0
    
    0 讨论(0)
  • 2020-11-30 19:26

    There are two ways to sum of a column

    dataset = pd.read_csv("data.csv")

    1: sum(dataset.Column_name)

    2: dataset['Column_Name'].sum()

    If there is any issue in this the please correct me..

    0 讨论(0)
  • 2020-11-30 19:33

    Similar to getting the length of a dataframe, len(df), the following worked for pandas and blaze:

    Total = sum(df['MyColumn'])
    

    or alternatively

    Total = sum(df.MyColumn)
    print Total
    
    0 讨论(0)
  • 2020-11-30 19:36

    You should use sum:

    Total = df['MyColumn'].sum()
    print (Total)
    319
    

    Then you use loc with Series, in that case the index should be set as the same as the specific column you need to sum:

    df.loc['Total'] = pd.Series(df['MyColumn'].sum(), index = ['MyColumn'])
    print (df)
             X  MyColumn      Y      Z
    0        A      84.0   13.0   69.0
    1        B      76.0   77.0  127.0
    2        C      28.0   69.0   16.0
    3        D      28.0   28.0   31.0
    4        E      19.0   20.0   85.0
    5        F      84.0  193.0   70.0
    Total  NaN     319.0    NaN    NaN
    

    because if you pass scalar, the values of all rows will be filled:

    df.loc['Total'] = df['MyColumn'].sum()
    print (df)
             X  MyColumn      Y      Z
    0        A        84   13.0   69.0
    1        B        76   77.0  127.0
    2        C        28   69.0   16.0
    3        D        28   28.0   31.0
    4        E        19   20.0   85.0
    5        F        84  193.0   70.0
    Total  319       319  319.0  319.0
    

    Two other solutions are with at, and ix see the applications below:

    df.at['Total', 'MyColumn'] = df['MyColumn'].sum()
    print (df)
             X  MyColumn      Y      Z
    0        A      84.0   13.0   69.0
    1        B      76.0   77.0  127.0
    2        C      28.0   69.0   16.0
    3        D      28.0   28.0   31.0
    4        E      19.0   20.0   85.0
    5        F      84.0  193.0   70.0
    Total  NaN     319.0    NaN    NaN
    

    df.ix['Total', 'MyColumn'] = df['MyColumn'].sum()
    print (df)
             X  MyColumn      Y      Z
    0        A      84.0   13.0   69.0
    1        B      76.0   77.0  127.0
    2        C      28.0   69.0   16.0
    3        D      28.0   28.0   31.0
    4        E      19.0   20.0   85.0
    5        F      84.0  193.0   70.0
    Total  NaN     319.0    NaN    NaN
    

    Note: Since Pandas v0.20, ix has been deprecated. Use loc or iloc instead.

    0 讨论(0)
  • 2020-11-30 19:41

    As other option, you can do something like below

    Group   Valuation   amount
        0   BKB Tube    156
        1   BKB Tube    143
        2   BKB Tube    67
        3   BAC Tube    176
        4   BAC Tube    39
        5   JDK Tube    75
        6   JDK Tube    35
        7   JDK Tube    155
        8   ETH Tube    38
        9   ETH Tube    56
    

    Below script, you can use for above data

    import pandas as pd    
    data = pd.read_csv("daata1.csv")
    bytreatment = data.groupby('Group')
    bytreatment['amount'].sum()
    
    0 讨论(0)
提交回复
热议问题