Since I wrote my prior answer, I have formulated a new definition of the declarative property which is quoted below. I have also defined imperative programming as the dual property.
This definition is superior to the one I provided in my prior answer, because it is succinct and it is more general. But it may be more difficult to grok, because the implication of the incompleteness theorems applicable to programming and life in general are difficult for humans to wrap their mind around.
The quoted explanation of the definition discusses the role pure functional programming plays in declarative programming.
Declarative vs. Imperative
The declarative property is weird, obtuse, and difficult to capture in a technically precise definition that remains general and not ambiguous, because it is a naive notion that we can declare the meaning (a.k.a semantics) of the program without incurring unintended side effects. There is an inherent tension between expression of meaning and avoidance of unintended effects, and this tension actually derives from the incompleteness theorems of programming and our universe.
It is oversimplification, technically imprecise, and often ambiguous to define declarative as “what to do” and imperative as “how to do”. An ambiguous case is the “what” is the “how” in a program that outputs a program— a compiler.
Evidently the unbounded recursion that makes a language Turing complete, is also analogously in the semantics— not only in the syntactical structure of evaluation (a.k.a. operational semantics). This is logically an example analogous to Gödel's theorem— “any complete system of axioms is also inconsistent”. Ponder the contradictory weirdness of that quote! It is also an example that demonstrates how the expression of semantics does not have a provable bound, thus we can't prove2 that a program (and analogously its semantics) halt a.k.a. the Halting theorem.
The incompleteness theorems derive from the fundamental nature of our universe, which as stated in the Second Law of Thermodynamics is “the entropy (a.k.a. the # of independent possibilities) is trending to maximum forever”. The coding and design of a program is never finished— it's alive!— because it attempts to address a real world need, and the semantics of the real world are always changing and trending to more possibilities. Humans never stop discovering new things (including errors in programs ;-).
To precisely and technically capture this aforementioned desired notion within this weird universe that has no edge (ponder that! there is no “outside” of our universe), requires a terse but deceptively-not-simple definition which will sound incorrect until it is explained deeply.
Definition:
The declarative property is where there can exist only one possible set of statements that can express each specific modular semantic.
The imperative property3 is the dual, where semantics are inconsistent under composition and/or can be expressed with variations of sets of statements.
This definition of declarative is distinctively local in semantic scope, meaning that it requires that a modular semantic maintain its consistent meaning regardless where and how it's instantiated and employed in global scope. Thus each declarative modular semantic should be intrinsically orthogonal to all possible others— and not an impossible (due to incompleteness theorems) global algorithm or model for witnessing consistency, which is also the point of “More Is Not Always Better” by Robert Harper, Professor of Computer Science at Carnegie Mellon University, one of the designers of Standard ML.
Examples of these modular declarative semantics include category theory functors e.g. the Applicative, nominal typing, namespaces, named fields, and w.r.t. to operational level of semantics then pure functional programming.
Thus well designed declarative languages can more clearly express meaning, albeit with some loss of generality in what can be expressed, yet a gain in what can be expressed with intrinsic consistency.
An example of the aforementioned definition is the set of formulas in the cells of a spreadsheet program— which are not expected to give the same meaning when moved to different column and row cells, i.e. cell identifiers changed. The cell identifiers are part of and not superfluous to the intended meaning. So each spreadsheet result is unique w.r.t. to the cell identifiers in a set of formulas. The consistent modular semantic in this case is use of cell identifiers as the input and output of pure functions for cells formulas (see below).
Hyper Text Markup Language a.k.a. HTML— the language for static web pages— is an example of a highly (but not perfectly3) declarative language that (at least before HTML 5) had no capability to express dynamic behavior. HTML is perhaps the easiest language to learn. For dynamic behavior, an imperative scripting language such as JavaScript was usually combined with HTML. HTML without JavaScript fits the declarative definition because each nominal type (i.e. the tags) maintains its consistent meaning under composition within the rules of the syntax.
A competing definition for declarative is the commutative and idempotent properties of the semantic statements, i.e. that statements can be reordered and duplicated without changing the meaning. For example, statements assigning values to named fields can be reordered and duplicated without changed the meaning of the program, if those names are modular w.r.t. to any implied order. Names sometimes imply an order, e.g. cell identifiers include their column and row position— moving a total on spreadsheet changes its meaning. Otherwise, these properties implicitly require global consistency of semantics. It is generally impossible to design the semantics of statements so they remain consistent if randomly ordered or duplicated, because order and duplication are intrinsic to semantics. For example, the statements “Foo exists” (or construction) and “Foo does not exist” (and destruction). If one considers random inconsistency endemical of the intended semantics, then one accepts this definition as general enough for the declarative property. In essence this definition is vacuous as a generalized definition because it attempts to make consistency orthogonal to semantics, i.e. to defy the fact that the universe of semantics is dynamically unbounded and can't be captured in a global coherence paradigm.
Requiring the commutative and idempotent properties for the (structural evaluation order of the) lower-level operational semantics converts operational semantics to a declarative localized modular semantic, e.g. pure functional programming (including recursion instead of imperative loops). Then the operational order of the implementation details do not impact (i.e. spread globally into) the consistency of the higher-level semantics. For example, the order of evaluation of (and theoretically also the duplication of) the spreadsheet formulas doesn't matter because the outputs are not copied to the inputs until after all outputs have been computed, i.e. analogous to pure functions.
C, Java, C++, C#, PHP, and JavaScript aren't particularly declarative.
Copute's syntax and Python's syntax are more declaratively coupled to
intended results, i.e. consistent syntactical semantics that eliminate the extraneous so one can readily
comprehend code after they've forgotten it. Copute and Haskell enforce
determinism of the operational semantics and encourage “don't repeat
yourself” (DRY), because they only allow the pure functional paradigm.
2 Even where we can prove the semantics of a program, e.g. with the language Coq, this is limited to the semantics that are expressed in the typing, and typing can never capture all of the semantics of a program— not even for languages that are not Turing complete, e.g. with HTML+CSS it is possible to express inconsistent combinations which thus have undefined semantics.
3 Many explanations incorrectly claim that only imperative programming has syntactically ordered statements. I clarified this confusion between imperative and functional programming. For example, the order of HTML statements does not reduce the consistency of their meaning.
Edit: I posted the following comment to Robert Harper's blog:
in functional programming ... the range of variation of a variable is a type
Depending on how one distinguishes functional from imperative
programming, your ‘assignable’ in an imperative program also may have
a type placing a bound on its variability.
The only non-muddled definition I currently appreciate for functional
programming is a) functions as first-class objects and types, b)
preference for recursion over loops, and/or c) pure functions— i.e.
those functions which do not impact the desired semantics of the
program when memoized (thus perfectly pure functional
programming doesn't exist in a general purpose denotational semantics
due to impacts of operational semantics, e.g. memory
allocation).
The idempotent property of a pure function means the function call on
its variables can be substituted by its value, which is not generally
the case for the arguments of an imperative procedure. Pure functions
seem to be declarative w.r.t. to the uncomposed state transitions
between the input and result types.
But the composition of pure functions does not maintain any such
consistency, because it is possible to model a side-effect (global
state) imperative process in a pure functional programming language,
e.g. Haskell's IOMonad and moreover it is entirely impossible to
prevent doing such in any Turing complete pure functional programming
language.
As I wrote in 2012 which seems to the similar consensus of
comments in your recent blog, that declarative programming is an
attempt to capture the notion that the intended semantics are never
opaque. Examples of opaque semantics are dependence on order,
dependence on erasure of higher-level semantics at the operational
semantics layer (e.g. casts are not conversions and reified generics
limit higher-level semantics), and dependence on variable values
which can not be checked (proved correct) by the programming language.
Thus I have concluded that only non-Turing complete languages can be
declarative.
Thus one unambiguous and distinct attribute of a declarative language
could be that its output can be proven to obey some enumerable set of
generative rules. For example, for any specific HTML program (ignoring
differences in the ways interpreters diverge) that is not scripted
(i.e. is not Turing complete) then its output variability can be
enumerable. Or more succinctly an HTML program is a pure function of
its variability. Ditto a spreadsheet program is a pure function of its
input variables.
So it seems to me that declarative languages are the antithesis of
unbounded recursion, i.e. per Gödel's second incompleteness
theorem self-referential theorems can't be proven.
Lesie Lamport wrote a fairytale about how Euclid might have
worked around Gödel's incompleteness theorems applied to math proofs
in the programming language context by to congruence between types and
logic (Curry-Howard correspondence, etc).