I asked myself the same question (and i needed to do it quickly), so i came up with these solutions :
u =sample(x=1:10E6, size = 1000000, replace=T)
s1 <- function() setdiff(u, u[duplicated(u)])
s2 <- function() u[!duplicated(u) & !duplicated(u, fromLast=T)]
s3 <- function() u[!(duplicated(u) | rev(duplicated(rev(u))))]
s4 <- function() u[!u %in% u[duplicated(u)]]
s5 <- function() u[!match(u, u[duplicated(u)], nomatch = 0)]
s6 <- function() u[!is.element(u, u[duplicated(u)])]
s7 <- function() u[!duplicated2(u)]
library(rbenchmark)
benchmark(s1(), s2(), s3(), s4(), s5(), s6(), s7(),
replications = 10,
columns = c("test", "elapsed", "relative"),
order = "elapsed")
test elapsed relative
5 s5() 1.95 1.000
4 s4() 1.98 1.015
6 s6() 1.98 1.015
2 s2() 2.49 1.277
3 s3() 2.92 1.497
7 s7() 3.04 1.559
1 s1() 3.06 1.569
The choice is yours.